Разделение урана. Разделение изотопов урана. Переработка обогащенного гексафторида урана. Основные методы разделения изотопов

Вот этот невзрачный серый цилиндр и является ключевым звеном российской атомной индустрии. Выглядит, конечно, не слишком презентабельно, но стоит понять его назначение и взглянуть на технические характеристики, как начинаешь осознавать, почему секрет его создания и устройства государство охраняет как зеницу ока.

Перед вами газовая центрифуга для разделения изотопов урана ВТ-3Ф (n-го поколения). Принцип действия элементарный, как у молочного сепаратора, тяжелое под воздействием центробежной силы отделяется от легкого. Так в чем же её значимость и уникальность?

Для начала ответим на другой вопрос - а вообще, зачем разделять уран?
Природный уран, который прямо в земле лежит, представляет из себя коктейль из двух изотопов: урана-238 и урана-235 (и 0,0054 % U-234).

Уран-238 - это просто тяжелый, серого цвета металл. Из него можно сделать артиллерийский снаряд, ну или… брелок для ключей. А вот, что можно сделать из урана-235? Ну, во-первых, атомную бомбу, во-вторых, топливо для АЭС. И вот тут мы подходим к ключевому вопросу - как разделить эти два, практически идентичных атома, друг от друга? Нет, ну действительно, КАК?!

Кстати: Радиус ядра атома урана -1.5 10-8 см.
Для того, чтобы атомы урана можно было загнать в технологическую цепочку, его (уран) нужно превратить в газообразное состояние. Кипятить смысла нет, достаточно соединить уран с фтором и получить гексафторид урана ГФУ . Технология его получения не очень сложная и затратная, а потому ГФУ получают прямо там, где этот уран и добывают. UF6 является единственным легколетучим соединением урана (при нагревании до 53°С гексафторид непосредственно переходит из твердого состояния в газообразное). Затем его закачивают в специальные емкости и отправляют на обогащение.

UF6 является единственным легколетучим соединением урана (при нагревании до 53°С гексафторид непосредственно переходит из твердого состояния в газообразное). Затем его закачивают в специальные емкости и отправляют на обогащение.


Немного истории

В самом начале ядерной гонки, величайшими научными умами, как СССР, так и США, осваивалась идея диффузионного разделения - пропускать уран через сито. Маленький 235-й изотоп проскочит, а «толстый» 238-й застрянет. Причем изготовить сито с нано-отверстиями для советской промышленности в 1946-м году было не самой сложной задачей.

Из доклада Исаака Константиновича Кикоина на научно-технического совете при Совете Народных Комиссаров (приведен в сборнике рассекреченных материалах по атомному проекту СССР (Ред. Рябев)): В настоящее время мы научились делать сетки с отверстиями около 5/1 000 мм, т.е. в 50 раз большими длины свободного пробега молекул при атмосферном давлении. Следовательно, давление газа, при котором разделение изотопов на таких сетках будет происходить, должно быть меньше 1/50 атмосферного давления. Практически мы предполагаем работать при давлении около 0,01 атмосферы, т.е. в условиях хорошего вакуума. Расчет показывает, что для получения продукта, обогащенного до концентрации в 90 % легким изотопом (такая концентрация достаточна для получения взрывчатого вещества), нужно соединить в каскад около 2 000 таких ступеней. В проектируемой и частично изготовленной нами машине рассчитывается получить 75-100 г урана-235 в сутки. Установка будет состоять приблизительно из 80-100 «колонн», в каждой из которых будет смонтировано 20-25 ступеней».

Доклад Берии Сталину о подготовке первого атомного взрыва. Внизу дана небольшая справка о наработанных ядерных материалах к началу лета 1949-го года.

И вот теперь сами представьте - 2000 здоровенных установок, ради каких-то 100 грамм! Ну, а куда деваться-то, бомбы ведь нужны. И стали строить заводы, и не просто заводы, а целые города. И ладно только города, электричества эти диффузионные заводы требовали столько, что приходилось строить рядом отдельные электростанции.

На фото: первый в мире завод газодиффузионного обогащения урана К-25 в Ок-Ридже (США). Строительство обошлось в $500 млн. Протяженность U-образного здания около полумили.

В СССР Первая очередь Д-1 комбината №813 была рассчитана на суммарный выпуск 140 граммов 92-93 %-ного урана-235 в сутки на 2-х идентичных по мощности каскадах из 3100 ступеней разделения. Под производство отводился недостроенный авиационный завод в поселке Верх-Нейвинск, что в 60 км от Свердловска. Позже он превратился в Свердловск-44, а 813-й завод в Уральский электрохимический комбинат - крупнейшее в мире разделительное производство.

Уральский электрохимический комбинат - крупнейшее в мире разделительное производство.

И хотя технология диффузионного разделения, пусть и с большими технологическими трудностями, но была отлажена, идея освоения более экономичного центрифужного процесса не сходила с повестки дня. Ведь если удастся создать центрифугу, то энергопотребление сократится от 20 до 50 раз!

Как устроена центрифуга?

Устроена она более чем элементарно и похожа на старую стиральную машину, работающую в режиме «отжим/сушка». В герметичном кожухе находится вращающийся ротор. В этот ротор подается газ (UF6) . За счет центробежной силы, в сотни тысяч раз превышающей поле тяготения Земли, газ начинает разделяться на «тяжелую» и «легкую» фракции. Легкие и тяжелые молекулы начинают группироваться в разных зонах ротора, но не в центре и по периметру, а вверху и внизу. Это возникает из-за конвекционных потоков - крышка ротора имеет подогрев и возникает противоток газа. Вверху и внизу цилиндра установлены две небольших трубочки - заборника. В нижнюю трубку попадает обедненная смесь, в верхнюю - смесь с большей концентрацией атомов 235U . Эта смесь попадает в следующую центрифугу, и так далее, пока концентрация 235-го урана не достигнет нужного значения. Цепочка центрифуг называется каскад.

Как устроена центрифуга?


Технические особенности

Ну, во-первых, скорость вращения у современного поколения центрифуг достигает 2000 об/сек (тут даже не знаю с чем сравнить…в 10 раз быстрее, чем турбина в авиадвигателе)! И работает она без остановки ТРИ ДЕСЯТКА лет! Т.е. сейчас в каскадах вращаются центрифуги, включенные еще при Брежневе! СССР уже нет, а они все крутятся и крутятся. Не трудно подсчитать, что за свой рабочий цикл ротор совершает 2 000 000 000 000 (два триллиона) оборотов. И какой подшипник это выдержит? Да никакой! Нет там подшипников. Сам ротор представляет из себя обыкновенный волчок, внизу у него прочная иголка, опирающаяся на корундовый подпятник, а верхний конец висит в вакууме, удерживаясь электромагнитным полем. Иголка тоже непростая, сделанная из обычной проволоки для рояльных струн, она закалена очень хитрым способом (каким - ГТ). Нетрудно представить, что при такой бешеной скорости вращения, сама центрифуга должна быть не просто прочной, а сверхпрочной.

Вспоминает академик Иосиф Фридляндер: «Трижды вполне расстрелять могли. Однажды, когда мы уже получили Ленинскую премию, случилась крупная авария, у центрифуги отлетела крышка. Куски разлетелись, разрушили другие центрифуги. Поднялось радиоактивное облако. Пришлось всю линию останавливать - километр установок! В Средмаше центрифугами командовал генерал Зверев, до атомного проекта он работал в ведомстве Берии. Генерал на совещании сказал: "Положение критическое. Под угрозой оборона страны. Если мы быстро не выправим положение, для вас повторится 37-й год". И сразу совещание закрыл. Придумали мы тогда совершенно новую технологию с полностью изотропной равномерной структурой крышек, но требовались очень сложные установки. С тех пор именно такие крышки и производятся. Никаких неприятностей больше не было. В России 3 обогатительных завода, центрифуг - многие сотни тысяч.»

На фото: испытания первого поколения центрифуг.

Корпуса роторов тоже поначалу были металлические, пока на смену им не пришел… углепластик. Легкий и особопрочный на разрыв, он является идеальным материалом для вращающегося цилиндра.

Вспоминает Генеральный директор УЭХК (2009-2012) Александр Куркин: «Доходило до смешного. Когда испытывали и проверяли новое, более «оборотистое» поколение центрифуг, один из сотрудников не стал дожидаться полной остановки ротора, отключил ее из каскада и решил перенести на руках на стенд. Но вместо движения вперед, как не упирался, он с этим цилиндром в обнимку, стал двигаться назад. Так мы воочию убедились, что земля вращается, а гироскоп, это великая сила.»

Кто изобрел?

О, это загадка, погружённая в тайну и укутанная неизвестностью. Тут вам и немецкие плененные физики, ЦРУ, офицеры СМЕРШа и даже сбитый летчик-шпион Пауэрс. А вообще, принцип газовой центрифуги описан еще в конце 19-го века.
Ещё на заре Атомного проекта инженер Особого конструкторского бюро Кировского завода Виктор Сергеев предлагал центрифужный метод разделения, но сначала его идею коллеги не одобряли. Параллельно над созданием разделительной центрифуги в специальном НИИ--5 в Сухуми бились учёные из побеждённой Германии: доктор Макс Штеенбек, который при Гитлере работал ведущим инженером Siemens, и бывший механик «Люфтваффе», выпускник Венского университета Гернот Циппе. Всего в группу входило около 300 «вывезенных» физиков.

Вспоминает генеральный директор ЗАО «Центротех-СПб» ГК «Росатом» Алексей Калитеевский: «Наши специалисты пришли к выводу, что немецкая центрифуга абсолютно непригодна для промышленного производства. В аппарате Штеенбека не было системы передачи частично обогащённого продукта в следующую ступень. Предлагалось охлаждать концы крышки и замораживать газ, а потом его разморозить, собрать и пустить в следующую центрифугу. То есть, схема неработоспособная. Однако в проекте было несколько очень интересных и необычных технических решений. Эти «интересные и необычные решения» были соединены с результатами, полученными советскими учёными, в частности с предложениями Виктора Сергеева. Условно говоря, наша компактная центрифуга — на треть плод немецкой мысли, а на две трети — советской». Кстати, когда Сергеев приезжал в Абхазию и высказывал тем же Штеенбеку и Циппе свои мысли по поводу отбора урана, Штеенбек и Циппе отмахнулись от них, как от нереализуемых.

Итак, что же придумал Сергеев?

А предложение Сергеева заключалось в создании отборников газа в виде трубок Пито. Но доктор Штеенбек, съевший зубы, как он считал, на этой теме, проявил категоричность: «Они станут тормозить поток, вызывать турбулентность, и никакого разделения не будет!» Спустя годы, работая над мемуарами, он об этом пожалеет: «Идея, достойная того, чтобы исходить от нас! Но мне она в голову не приходила...».
Позже, оказавшись за пределами СССР, Штеенбек центрифугами больше не занимался. А вот Геронт Циппе перед отъездом в Германию имел возможность ознакомиться с опытным образцом центрифуги Сергеева и гениально простым принципом ее работы. Оказавшись на Западе, «хитрый Циппе», как его нередко называли, запатентовал конструкцию центрифуги под своим именем (патент №1071597 от 1957 года, заявлен в 13 странах). В 1957 году, переехав в США, Циппе построил там работающую установку, воспроизведя по памяти опытный образец Сергеева. И назвал ее, отдадим должное, «Русской центрифугой».

Кстати, русская инженерная мысль проявила себя и в многих других случаях. В качестве примера можно привести элементарный аварийный запорный клапан. Там нет датчиков, детектеров и электронных схем. Там есть только самоварный краник, который своим лепестком касается станины каскада. Если что не так, и центрифуга меняет свое положение в пространстве, он просто поворачивается и закрывает входную магистраль. Это как в анекдоте про американскую ручку и русский карандаш в космосе.

Переехав в США, Циппе построил там работающую установку, воспроизведя по памяти опытный образец Сергеева. И назвал ее «Русской центрифугой».

Наши дни

На этой неделе автор этих строк присутствовал на знаменательном событии - закрытии российского офиса наблюдателей министерства энергетики США по контракту ВОУ-НОУ . Эта сделка (высокообогащенный уран - низкообогащенный уран) была, да и остается, крупнейшим соглашением в области ядерной энергетики между Россией и Америкой. По условиям контракта, российские атомщики переработали 500 тонн нашего оружейного (90%) урана в топливный (4%) ГФУ для американских АЭС. Доходы за 1993-2009 годы составили 8,8 млрд. долларов США. Это стало логическим исходом технологического прорыва наших ядерщиков в области разделения изотопов, сделанного в послевоенные годы.

Благодаря центрифугам мы получили тысячи тонн относительно дешевого, как военного, так и коммерческого продукта. Атомная отрасль, одна из немногих оставшихся (военная авиация, космос), где Россия удерживает непререкаемое первенство. Одних только зарубежных заказов на десять лет вперед (с 2013 года по 2022 год), портфель «Росатома» без учета контракта ВОУ-НОУ составляет 69,3 миллиарда долларов. В 2011 году он перевалил за 50 миллиардов.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Sp-force-hide { display: none;}.sp-form { display: block; background: #ffffff; padding: 15px; width: 960px; max-width: 100%; border-radius: 5px; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-color: #dddddd; border-style: solid; border-width: 1px; font-family: Arial, "Helvetica Neue", sans-serif; background-repeat: no-repeat; background-position: center; background-size: auto;}.sp-form input { display: inline-block; opacity: 1; visibility: visible;}.sp-form .sp-form-fields-wrapper { margin: 0 auto; width: 930px;}.sp-form .sp-form-control { background: #ffffff; border-color: #cccccc; border-style: solid; border-width: 1px; font-size: 15px; padding-left: 8.75px; padding-right: 8.75px; border-radius: 4px; -moz-border-radius: 4px; -webkit-border-radius: 4px; height: 35px; width: 100%;}.sp-form .sp-field label { color: #444444; font-size: 13px; font-style: normal; font-weight: bold;}.sp-form .sp-button { border-radius: 4px; -moz-border-radius: 4px; -webkit-border-radius: 4px; background-color: #0089bf; color: #ffffff; width: auto; font-weight: 700; font-style: normal; font-family: Arial, sans-serif;}.sp-form .sp-button-container { text-align: left;}

Разделение изотопов

Разделение изотопов - технологический процесс, в котором из материала, состоящего из смеси различных изотопов одного химического элемента , выделяются отдельные изотопы этого элемента. Основное применение процесса разделения изотопов - производство ядерного топлива, оружейных радиоактивных материалов, и прочие применения, связанные с использованием радиоактивных веществ. В таких случаях разделение обычно преследует цель обогащения или обеднения материала определёнными радиоактивными изотопами.

Общие принципы

Разделение изотопов (например извлечение , 235 U , ) всегда сопряжено со значительными трудностями, ибо изотопы , представляющие собой мало отличающиеся по массе вариации одного элемента , химически ведут себя практически одинаково. Но - скорость прохождения некоторых реакций отличается в зависимости от изотопа элемента, кроме того, можно использовать различие в их физических свойствах - например в массе .

Как бы то ни было, различия в поведении изотопов настолько малы, что за одну стадию разделения, вещество обогащается на сотые доли процента и повторять процесс разделения приходится снова и снова - огромное количество раз.

На производительность подобной каскадной системы влияют две причины: степень обогащения на каждой из ступеней и потери искомого изотопа в отходном потоке.

Поясним второй фактор. На каждой из стадий обогащения поток разделяется на две части - обогащённую и обеднённую нужным изотопом. Поскольку степень обогащения чрезвычайно низка, суммарная масса изотопа в отработанной породе может легко превысить его массу в обогащённой части. Для исключения такой потери ценного сырья обеднённый поток каждой последующей ступени попадает снова на вход предыдущей.

Исходный материал не поступает на первую стадию каскада. Он вводится в систему сразу на некоторую, n-ю ступень. Благодаря этому с первой ступени выводится в утиль сильно обеднённый по основному изотопу материал.

Основные используемые методы разделения изотопов

  • Электромагнитное разделение
  • Газовая диффузия
  • Жидкостная термодиффузия
  • Газовое центрифугирование
  • Аэродинамическая сепарация
  • Лазерное разделение изотопов
  • Химическое обогащение
  • Фотохимическое разделение

В любом случае, количество произведённого обогащённого материала зависит от желаемой степени обогащения и обеднения выходных потоков. Если исходное вещество имеется в большом количестве и дёшево, то производительность каскада можно увеличить за счёт отбрасывания вместе с отходами и большого количества неизвлёченного полезного элемента (пример - производство дейтерия из обычной воды). При необходимости достигается большая степень извлечения изотопа из материала-сырца (например, при обогащении урана или плутония).

Электромагнитное разделение

Метод электромагнитного разделения основан на различном действии магнитного поля на одинаково электрически заряженные частицы различной массы. По сути дела такие установки, называемые калютронами, являются огромными масс-спектрометрами . Ионы разделяемых веществ, двигаясь в сильном магнитном поле, закручиваются с радиусами, пропорциональными их массам и попадают в приёмники, где и накапливаются.

Этот метод позволяет разделять любые комбинации изотопов, обладает очень высокой степенью разделения. Обычно достаточно двух проходов для получения степени обогащения выше 80 % из бедного вещества (с исходным содержанием желаемого изотопа менее 1 %). Однако электромагнитное разделение плохо приспособлено для промышленного производства: большая часть веществ осаждается внутри калютрона, так что его приходится периодически останавливать на обслуживание. Остальные недостатки - большое энергопотребление, сложность и дороговизна технического обслуживания, низкая производительность. Основная сфера применения метода - получение небольших количеств чистых изотопов для лабораторного применения. Тем не менее, во время второй мировой войны была построена установка Y-12 , вышедшая с января 1945 на мощность 204 грамма 80 % U-235 в день.

Газовая диффузия

Этот метод использует различие в скоростях движения различных по массе молекул газа. Понятно, что он будет подходить только для веществ, находящихся в газообразном состоянии.

При различных скоростях движения молекул, если заставить их двигаться через тонкую трубочку, более быстрые и лёгкие из них обгонят более тяжёлые. Для этого трубка должна быть настолько тонка, чтобы молекулы двигались по ней поодиночке. Таким образом, ключевой момент здесь - изготовление пористых мембран для разделения. Они должны не допускать утечек, выдерживать избыточное давление.

Для некоторых лёгких элементов степень разделения может быть достаточно велика, но для урана - только 1.00429 (выходной поток каждой ступени обогащается в 1.00429 раза). Поэтому газодиффузионные обогатительные предприятия - циклопические по размерам, состоящие из тысяч ступеней обогащения.

Жидкостная термодиффузия

В этом случае опять же, используется различие в скоростях движения молекул. Более лёгкие из них при существовании разницы температуры имеют свойство оказываться в более нагретой области. Коэффициент разделения зависит от отношения разницы массы изотопов к общей массе и больший для лёгких элементов. Несмотря на свою простоту, в этом методе требуются большие энергозатраты для создания и поддержания нагрева. Поэтому широко не применяется.

Газовое центрифугирование

Впервые эта технология была разработана в Германии, во время второй мировой, но промышленно нигде не применялась до начала 50-х. Если газообразную смесь изотопов пропускать через высокоскоростные газовые центрифуги , то центробежная сила разделит более лёгкие или тяжёлые частицы на слои, где их и можно будет собрать. Большое преимущество центрифугирования состоит в зависимости коэффициента разделения от абсолютной разницы в массе, а не от отношения масс. Центрифуга одинаково хорошо работает и с лёгкими, и с тяжёлыми элементами. Степень разделения пропорциональна квадрату отношения скорости вращения к скорости молекул в газе. Отсюда очень желательно как можно быстрее раскрутить центрифугу. Типичные линейные скорости вращающихся роторов - 250-350 м/с, и более 600 м/с в усовершенствованных центрифугах.

Типичный коэффициент сепарации - 1.01 - 1.1. По сравнению с газодиффузионными установками этот метод имеет уменьшенное энергопотребление, большую лёгкость в наращивании мощности. В настоящее время газовое центрифугирование - основной промышленный метод разделения изотопов в России.

Аэродинамическая сепарация

Этот способ можно рассматривать как вариант центрифугирования, но вместо закручивания газа в центрифуге, он завихряется при выходе из специальной форсунки, куда подаётся под давлением. Эта технология, основанная на вихревом эффекте , использовалась ЮАР и Германией.

Лазерное разделение изотопов (ЛРИ)

Различные изотопы поглощают свет с немного различной длиной волны. При помощи точно настроенного лазера можно избирательно ионизировать атомы какого-то определённого изотопа. Получившиеся ионы можно легко отделить, допустим, магнитным полем. Такая технология имеет чрезвычайную эффективность и применялась в ЮАР (MLIS), КНР (CRISLA), США (AVLIS) и Франции (SILVA). Технология имеет большой недостаток, а именно трудность в перестройке аппаратуры с одного изотопа на другой. На смену AVLIS пришла SILEX (Separation of Isotopes by Laser EXcitation) разработки "General Electric" и "Hitachi". Начато строительство завода в Уилмингтоне , штат Северная Каролина .

Химическое обогащение

Химическое обогащение использует разницу в скорости протекания химических реакций с различными изотопами. Лучше всего оно работает при разделении лёгких элементов, где разница значительна. В промышленном производстве применяются реакции, идущие с двумя реактивами, находящимися в различных фазах (газ/жидкость, жидкость/твёрдое вещество, несмешивающиеся жидкости). Это позволяет легко разделять обогащённый и обеднённый потоки. Используя дополнительно разницу температур между фазами, достигается дополнительный рост коэффициента разделения. На сегодня химическое разделение - самая энергосберегающая технология получения тяжёлой воды. Кроме производства дейтерия, оно применяется для извлечения 6 Li. Во Франции и Японии разрабатывались методы химического обогащения урана, так и не дошедшие до промышленного освоения.

Дистилляция


Wikimedia Foundation . 2010 .

Смотреть что такое "Разделение изотопов" в других словарях:

    разделение изотопов - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN isotope separationisotope fractionation …

    разделение изотопов - izotopų atskyrimas statusas T sritis radioelektronika atitikmenys: angl. isotope separation vok. Isotopentrennung, f rus. разделение изотопов, n pranc. séparation d isotopes, f … Radioelektronikos terminų žodynas

    Обусловлено различиями физико хим. свойств, связанными с их массой и определяющими разные скорости их диффузии, испарения и т. д. Термодинамические особенности изотопов и их соединений несколько различаются, чем объясняется их несколько отличное… … Геологическая энциклопедия

    разделение изотопов в высокоградиентном магнитном поле - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN high gradient magnetic isotope separation … Справочник технического переводчика

    разделение изотопов в оперативном режиме - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN isotope separation on lineISOL … Справочник технического переводчика

    разделение изотопов выпариванием с помощью лазеров - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN atomic vapor laser isotope separationAVLIS … Справочник технического переводчика

    разделение изотопов методом химического обмена - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN CHEMEX (chemical exchange) process … Справочник технического переводчика

    разделение изотопов на молекулярном уровне с помощью лазеров - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN molecular laser isotope separationMLIS … Справочник технического переводчика

    Разделение изотопов, основанное на изотопич. сдвиге уровней энергии атомов и молекул и использовании резонансного воздействия лазерного излучения. Интенсивное монохроматическое излучение лазера, вызывая переходы между соответствующими энергетич.… … Физическая энциклопедия

Атомная энергия для военных целей Смит Генри Деволф

Глава Х. Разделение изотопов урана диффузией

ВВЕДЕНИЕ

10.1. В феврале 1940 г. небольшие количества концентрированных фракций трех изотопов урана с массовыми числами 234, 235 и 238 были получены А. О. Ниром при помощи масс-спектрометра и переданы Э. Т. Буту, А. фон-Гроссе и Дж. Р. Данингу для исследования при помощи циклотрона Колумбийского университета. Эти ученые вскоре показали, что именно изотоп U-235 способен делиться под действием тепловых нейтронов. Естественно, поэтому, что эта руководимая Данингом группа стала более, чем когда-либо, работать над разделением изотопов урана в больших масштабах.

10.2. Метод диффузии, по-видимому, впервые был серьезно рассмотрен Данингом в записке к Дж. Б. Пеграму, которая была переслана Л.Дж. Бригсу осенью 1940 г. Эта записка подводила итоги предварительным исследованиям, которые были проведены Э. Т. Бутом, А. фон Гроссе и Дж. Р. Данингом. Работа была ускорена в 1941 г. финансовой помощью, обусловленной контрактом, которую Г. К. Юри получил от Военно-морского флота для изучения разделения изотопов, главным образом методом центрифугирования. В течение этого периода Ф.Дж. Слэк (Университет Вандербильта) и В. Ф. Либи (Калифорнийский университет) присоединились к группе.

Контракт ОСРД (OEMsr-106), который был заключен ранее специально для изучения диффузии, вошел в силу 1 июля 1941 г. сроком на 1 год. Работа во все увеличивающихся масштабах продолжалась по ряду контрактов с ОСРД и с Армией до конца весны 1945 г. До мая 1943 г. Данинг непосредственно отвечал за эту работу. Юри был ответственным за статистические методы разделения изотопов вообще. С этого времени до февраля 1945 г. Юри был прямым руководителем той части работ по диффузии, которая проводилась в Колумбийском университете; Данинг оставался руководителем одного из основных разделов этой работы.

1 марта 1945 г. лаборатория была принята от Колумбийского университета фирмой Carbide and Carbon Chemical Corporation. В начале 1942 г. по предложению Э. В. Мерфри для разработки проектов установки производственного масштаба, оборудования для диффузионных заводов и, возможно, постройки завода была привлечена фирма M.W. Kellog Co. Чтобы довести до конца все предприятие, была образована новая, дочерняя компания, названная Kellex Corporation. В январе 1943 г. ответственность за работу завода была передана фирме Carbide and Carbon Chemical Corporation.

10.3. Как отмечалось в главе IV, в конце 1941 г. была доказана, в принципе, возможность разделения шестифтористого урана посредством одноступенчатой диффузионной установки с пористой перегородкой (например фильтром, изготовленным травлением тонкой фольги сплава цинк-серебро соляной кислотой). Большая работа была проведена по перегородкам и насосам, но ответ, вполне удовлетворительный для работы в производственном масштабе, найден не был. Наряду с этим, К. Когеном был начат ряд теоретических исследований, на которые мы уже ссылались, относительно того, какой путь использования процесса диффузии является наилучшим, т. е. сколько ступеней может потребоваться, какова общая потребная площадь перегородок, какой объем газа должен циркулировать и т. д. Теоретические исследования и разработка схемы процесса М. Бенедиктом намного увеличили наши сведения в этой области и послужили основой для проектирования большого завода.

10.4. Информация, полученная из Англии, и визит английской группы зимой 1941–1942 г. осветили ряд пунктов. В это время англичане сами проектировали диффузионную разделительную установку, так что дискуссия с Ф. Симоном, Р. Пайерлсом и другими была особенно ценной.

Из книги Прометей раскованный автора Снегов Сергей Александрович

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Осколки частиц, или Трудное разделение Ученые отчаянно нуждались в аппаратуре для изучения этих новых частиц, но космические лучи оказались слишком уж ненадежными из-за столь широких перепадов их энергии, да и неизвестно было, откуда их ждать. В начале 1930-х годов

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

РАЗДЕЛЕНИЕ ИЗОТОПОВ РАЗДЕЛЕНИЕ В НЕБОЛЬШИХ МАСШТАБАХ ПРИ ПОМОЩИ МАСС-СПЕКТРОГРАФА4.29. В главе I было указано, что в результате частичного разделения небольших количеств изотопов урана в масс-спектрографе А.О. Нира и изучения ядерных свойств образцов было установлено, что

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Глава IX. Общее рассмотрение вопроса о разделении изотопов 9.1. Возможность изготовления атомной бомбы из U-235 была установлена до того. как был открыт плутоний. Так как давно было ясно, что разделение изотопов урана явится прямым и главным этапом в производстве такой бомбы,

Из книги Принц из страны облаков автора Гальфар Кристоф

ФАКТОРЫ, ВЛИЯЮЩИЕ НА РАЗДЕЛЕНИЕ ИЗОТОПОВ 9.2. По определению, изотопы элемента отличаются своими массами, но не химическими свойствами. Точнее говоря, хотя массы ядер изотопов и их строение различны, заряды ядер одинаковы, и поэтому наружные электронные оболочки

Из книги 50 лет советской физики автора Лешковцев Владимир Алексеевич

ДРУГИЕ МЕТОДЫ РАЗДЕЛЕНИЯ ИЗОТОПОВ 9.31. В дополнение к методам разделения изотопов, описанным выше, было испытано также несколько других. Метод ионной подвижности, как указывает название, основан на следующем факте.В растворе электролита два иона, химически тождественные,

Из книги автора

РАЗДЕЛЕНИЕ ИЗОТОПОВ И ПРОИЗВОДСТВО ПЛУТОНИЯ 9.44. Наиболее важные методы разделения изотопов, которые были описаны, в принципе были известны и применялись на практике до того, как задача разделения изотопов урана приобрела первостепенное значение. Эти методы не

Из книги автора

ПРОБЛЕМА РАЗДЕЛЕНИЯ ИЗОТОПОВ В ПРОМЫШЛЕННОМ МАСШТАБЕ ВВЕДЕНИЕ10.9. Ко времени реорганизации Проекта атомной бомбы в декабре 1941 г. теория разделения изотопов посредством газовой диффузии была хорошо разработана. Поэтому можно было сформулировать технические проблемы, с

Из книги автора

Глава XI. Электромагнитное разделение изотопов урана ВВЕДЕНИЕ 11.1. В главе IV мы говорили, что возможность разделения изотопов урана в больших масштабах электромагнитным методом была предсказана в конце 1941 г. Э. А. Лоуренсом (Калифорнийский университет) и Г. Д. Смитом

Из книги автора

Приложение 3. Запаздывающие нейтроны при делении урана Как отмечалось в главе VI, управление котлом значительно облегчается благодаря тому, что часть нейтронов, освобождаемых при делении урана, испускается только по прошествии более одной секунды с момента деления. Важно

Из книги автора

Начало атомной энергетики. Открытие изотопов В послевоенные годы возобновились прерванные войной исследования по ядерной физике. В Кембридже продолжил начатые еще до войны исследования над положительными лучами Д. Д. Томсон.Д. Д. Томсон работал с разрядной трубкой, в

Из книги автора

Деление урана Остановимся на истории этого открытия. Оно явилось завершением целого ряда поисков и ошибок.Вскоре после сообщения ферми о трансурановых элементах немецкий химик Ида Ноддак опубликовала в химическом журнале статью, в которой указывала, что под

Из книги автора

Глава 8 С прохладным и сыроватым рассветным воздухом смешивался густой дым, валивший из печных труб. На всех перекрестках в центре Белой Столицы были расставлены люди снегобоя. Они походили не столько на стражей порядка, сколько на оккупационные войска.Тристам и Том в

Из книги автора

Глава 15 Они шли долго, может быть, несколько часов. Тристам молча шагал за Вакингом и Миртиль, улавливая обрывки их разговора. Так, он услышал, что большинство летчиков из Белой Столицы, по мнению лейтенанта, должны были спастись и даже не слишком пострадать: все они были

Из книги автора

САМОПРОИЗВОЛЬНОЕ ДЕЛЕНИЕ ЯДЕР УРАНА И ВОЗМОЖНОСТЬ ЦЕПНОГО ПРОЦЕССА В 1934 г. итальянский физик Энрико Ферми впервые облучил уран только что открытыми нейтронами в надежде увеличить массу исходных ядер и получить элементы с бо?льшим атомным весом, чем уран. Результаты

Правда что ли, скажете вы, природный уран никому не нужен? Давайте посмотрим на потребление.

В данный момент спросом в мире пользуются следующие виды обогащенного урана:

  • 1. Природный уран (0,712%). Тяжеловодные реакторы (PHWR), например CANDU
  • 2. Слабо-обогащенный уран (2-3%, 4-5%). Реакторы типа вода-графит-цирконий, вода-вода-цирконий, реакторы ВВЭР, PWR, РБМК
  • 3. Средне обогащённый уран (15-25%), Быстрые реакторы, реакторы транспортных (ледоколы, ПАТЭС) ЯЭУ
  • 4. Высокообогащенный уран (>50%), ТрЯЭУ (подлодки), исследовательские реакторы.
Природный уран проходит только по первому пункту. Если предположить, что у нас в мире потребители урана это только коммерческие реакторы, то PHWR из них - это менее 10%. А если считать все остальное (транспортные, исследовательские) то… короче говоря природный уран ни к селу ни к городу. А значит почти любой потребитель требует наращивания процентного содержания легкого изотопа в смеси 235-238. Более того, уран используется не только в ядерной энергетике, но и в производстве брони, боеприпасов, и еще кое-чего. А там лучше иметь обедненный уран, что в принципе требует тех же процессов, только наоборот.

Про методы обогащения и будет статья.

В качестве сырья для обогащения используют не чистый металлический уран, а гексафторид урана UF 6 , который по совокупности свойств является наиболее подходящим химическим соединением для изотопного обогащения. Для химиков отметим, что фторирование урана происходит в вертикальном плазменном реакторе.
Несмотря на все обилие методов обогащения на сегодняшний день только две из них используются в промышленных масштабах - газовая диффузия и центрифуги. В обоих случаях используется газ - UF 6 .

Ближе к делу о разделении изотопов. Для любого метода эффективность разделения изотопов характеризуется коэффициентом разделения α – отношение доли «легкого» изотопа в «продукте» к его доле в первичной смеси.

Для большинства методов α лишь немного больше единицы, поэтому для получения высокой изотопной концентрации единичную операцию разделения изотопов приходится многократно повторять (каскады). Например, для газодиффузионного метода α=1.00429, для центрифуг значение сильно зависит от окружной скорости – при 250м/с α=1.026, при 600м/с α=1.233. Только при электромагнитном разделении α составляет 10-1000 за 1 цикл разделения. Сравнительная таблица по нескольким параметрам будет в конце.

Весь каскад машин по обогащению всегда разбит на ступени. В первой ступени каскада разделения поток исходной смеси разбивается на два потока: обедненный (удаляемый из каскада), и обогащенный. Обогащенный подается на 2-ю ступень. На 2-й ступени однажды обогащенный поток вторично подвергается разделению:
обогащенный поток 2-й ступени поступает на 3-ю, а ее обедненный поток возвращается на предыдущую (1-ю) и т.д. С последней ступени каскада отбирается готовый продукт с требуемой концентрацией заданного изотопа.

Коротко расскажу про основные методы разделения, применявшиеся когда либо в мире.

Электромагнитное разделение

По этому методу возможно разделить компоненты смеси в магнитном поле, причем с высокой чистотой. Электромагнитное разделение является исторически первым методом, освоенным для разделения изотопов урана.

Поскольку разделение можно выполнить с ионами урана, то конверсия урана в UF 6 в принципе - не обязательна. Этот метод дает высокую чистоту, но низкий выход при больших энергозатратах. Вещество, изотопы которого требуется разделить, помещается в тигель ионного источника, испаряется и ионизуется. Ионы вытягиваются из ионизационной камеры сильным электрическим полем. Ионный пучок попадает в вакуумную разделительную камеру в магнитном поле Н, направленном перпендикулярно движению ионов. В результате ионы движутся по своим окружностям с различными (в зависимости от массы) радиусами кривизны. Достаточно взглянуть на картинку и вспомнить школьные уроки, где все мы считали, по какому радиусу полетит электрон или протон в магнитном поле.

Схема, демонстрирующая принцип электромагнитного разделения.

Преимущество способа – использование относительно простой технологии (калютроны : CAL ifornia U niversity).
Применялся для обогащения урана на заводе Y-12 (США), имел 5184 разделительные камеры - «калютроны», и впервые позволил получить килограммовые количества 235U высокого обогащения – 80% или выше.

В Манхэттенском проекте калютоны использовались после термодиффузии – на альфа-калютроны поступало сырье 7% (завод Y-12) и обогащась до 15%. Уран оружейного качества (до 90%) получался на бета-калютронах на заводе Y-12. Альфа и бета калютроны не имеют ничего общего с альфа и бета частицами, просто это две «линии» калютронов, одна для предварительного, вторая для конечного обогащения.

Метод позволяет разделять любые комбинации изотопов, обладает очень высокой степенью разделения. Двух проходов достаточно для обогащения выше 80% из бедного вещества с исходным содержанием менее 1%. Производительность определяется значением ионного тока и эффективностью улавливания ионов - до нескольких граммов изотопов в сутки (суммарно по всем изотопам).


Один из цехов электромагнитного разделения в Ок-Ридже (США)


Гигантский альфа-калютрон того же завода

Диффузионные методы

Диффузионные методы применялись для начального обогащения. На ряду с электромагнитным методом – исторически один из первых. Под диффузионным методом обычно понимают газовую диффузию – когда гексафторид урана нагревают до определенной температуры и пропускают через «сито» - специальной конструкции фильтр с отверстиями определённого размера.
Если пропускать газ, состоящий из двух сортов молекул (в нашем случае двух изотопов), через малое отверстие или через сетку, состоящую из большого числа малых отверстий, то оказывается, что более легкие молекулы газа проходят в большем количестве, нежели тяжелые. Существенно отметить, что это явление имеет место только тогда, когда молекулы проходят через отверстие, не сталкиваясь в нем,… т.е., когда длина свободного пробега молекулы больше диаметра отверстия. Соответственно, газ, прошедший мимо сеток, оказывается обедненным легкими молекулами. Практически же всегда имеет место обратное просачивание газа сквозь сетку, вследствие чего в действительности увеличение концентрации легкого изотопа (обогащение) оказывается несколько меньшим.

Ключевым моментом тут является фраза про размер отверстий. Первоначально сетки делали механическим способом, как сейчас – никто не знает. Более того материал - должен работать при повышенной температуре, а сами отверстия не должны закупориваться, из размер не должен меняться под действием коррозии и др. Технологии изготовления диффузионных барьеров засекречены до сих пор – такие же ноу-хау, как и с центрифугами.

Подробнее под спойлером, из того же доклада.

«О состоянии научно-исследовательских и практических работ Лаборатории № 2 по получению урана-235 диффузионным методом»

Обогащение оказывается тем большим, чем больше перепад давления на сетке. Перепад давления создается обычно компрессором (насосом), осуществляющим движение газа между сетками. Такая система, состоящая из сеток и компрессора, движущего газ, и является разделительной ступенью

В качестве газа мы употребляем шестифтористый уран. Это соль, обладающая довольно высокой упругостью пара при комнатной температуре. Что касается сеток, то к ним предъявляется требование, чтобы диаметр отверстия их был меньше длины свободного пробега молекул шестифтористого урана. Последняя, как это хорошо известно, обратно пропорциональна давлению газа. При атмосферном давлении длина свободного пробега молекул приблизительно равна 1/10000 мм. Поэтому, если бы мы умели делать тонкую сетку с отверстиями меньше 1/10 000 мм, мы могли бы работать с газом при атмосферном давлении.

В настоящее время мы научились делать сетки с отверстиями около 5/1000 мм, т.е. в 50 раз большими длины свободного пробега молекул при атмосферном давлении. Следовательно, давление газа, при котором разделение изотопов на таких сетках будет происходить, должно быть меньше 1/50 атмосферного давления. Практически мы предполагаем работать при давлении около 0,01 атмосферы, т.е. в условиях хорошего вакуума. Многократное обогащение газа при непрерывном процессе работы может быть осуществлено при помощи каскадной установки, состоящей из большого числа ступеней, соединенных последовательно. Расчет показывает, что для получения продукта, обогащенного до концентрации в 90% легким изотопом (такая концентрация достаточна для получения взрывчатого вещества), нужно соединить в каскад около 2000 таких ступеней. В проектируемой и частично изготовленной нами машине рассчитывается получить 75-100 г урана-235 в сутки. Установка будет состоять приблизительно из 80-100 «колонн», в каждой из которых будет смонтировано 20-25 ступеней. Общая площадь сеток (площадью сеток определяется производительность всей установки) составит около 8000 м 2 . Общая мощность, расходуемая компрессорами, составит 20 000 кВт.


К тому же хороший вакуум, что требует достаточно большой мощности компрессорного оборудования, и наличие большого количества аппаратуры контроля герметичности (что, в принципе в современном мире не проблема, но в статье речь шла о послевоенном времени где надо было все, сразу и быстро).

Применялся как одна из первых ступеней обогащения. В Манхэттенском проекте завод К-25 обогащал уран с 0.86% до 7%, далее сырье шло на калютроны. В СССР – многострадальный завод Д-1, а так же последовавшие за ним заводы Д-2 и Д-3, и так далее.

Так же под «диффузионным» методом разделения иногда понимают жидкостную диффузию – тоже, только в жидкой фазе. Физический принцип - более легкие молекулы собираются в более нагретой области. Обычно разделительная колонка состоит из двух коаксиально расположенных труб, в которых поддерживаются различные температуры. Разделяемая смесь вводится между ними. Перепад температур ΔТ приводит к возникновению конвективных вертикальных потоков, а между поверхностями труб создаётся диффузионный поток изотопов, что приводит к появлению разности концентрации изотопов в поперечном сечении колонки. Вследствие этого более лёгкие изотопы накапливаются у горячей поверхности внутренней трубы и движутся вверх. Термодиффузионный метод позволяет разделять изотопы как в газообразной, так и в жидкой фазе.

В Манхэттенском проекте это завод S-50 – он обогащал природный уран до 0.86%, т.е. всего в 1.2 раза увеличивал обогащение по пятому урану. В СССР работы по жидкостной диффузии велись Радиевым институтом в послевоенное время, но никакого развития это направление не получило.


Каскад машин газодифузионного разделения изотопов.
Подписи на патенте - Ф. Саймон, К. Фукс, Р. Пайерлс.

Аэродинамическая сепарация

Аэродинамическая сепарация это своего рода вариант центрифугирования, но вместо закручивания газа он завихряется в специальной форсунке. Вместо тысячи слов – см. рисунок, т.н. «сопло Беккера» для аэродинамического разделения изотопов урана (смесь водорода и гексафторида урана) при пониженном давлении. Гексафторид урана очень тяжелый газ и приводит к износу мелких деталей форсунок (см. масштаб), и может переходит в твёрдое состояние на участках повышенного давления (например на входе в форсунку), поэтому гексафторид разбавляют водородом. Понятно, что при 4% содержании сырья в газе, да еще и пониженном давлении эффективность такого способа не велика. Развивалась этот способ пытались в ЮАР и ФРГ.


Все что вам нужно знать о аэродинамической сепарации есть на этой картинке


Варианты форсунок

Газовое центрифугирование

Наверное каждый человек (а гик уж и подавно!) слышавший хоть раз атомную энергетику, бомбы и обогащение, в общих чертах знает что такое центрифуга, как она работает и что в конструировании таких приборов есть много сложностей, секретов и ноу-хау. Поэтому про газовое центрифугирование скажу буквально пару слов. Однако, чесно говоря, газовые центрифуги имеют очень богатую историю развития и заслуживают отдельной статьи.

Принцип работы – разделение за счет центробежных сил в зависимости от абсолютной разницы в массе. При вращении (до 1000 об/с, окружная скорость – 100 - 600 м/с) более тяжелые молекулы уходят на периферию, более легкие – в центре (у ротора). Этот метод на данный момент является самым продуктивным и дешевым (исходят из цены $/EPP).

Гугл изибилует схематичными картинками устройства центрифуги, я лишь приведу пару фотографий как выглядит собранный каскад. В таком помещении кстати говоря достаточно жарко – гексафоторид урана там находится далеко не при комнатной температуре, и весь такой каскад нужно еще и охлаждать.


Каскад центрифуг фирмы URENCO. Большие, метра под 3 в высоту.


Бывают и поменьше, около полуметра. Наши отечественные.


Для понимания масштабов, или что такое «цех от горизонта до горизонта».

Лазерное обогащение

Физический принцип лазерного обогащения в том, что атомные энергетические уровни различных изотопов незначительно отличаются.
Этот эффект может быть использован для разделения U-235 от U-238, как в атомарном - AVLIS, так и в молекулярном виде - МLIS.

В методе используются пары урана, и лазеры, которые точно настроены на определенную длину волны, возбуждая атомы именно 235-го урана. Далее ионизированные атомы удаляются из смеси электрическим или магнитным полем.

Технология очень простая, и, вобще говоря, не требует каких то супер-сложных механических устройств типа диффузионных сеток или центрифуг, одна есть и другая проблема.
В сентябре 2012 года компания Global Laser Enrichment LLC (GLE) – консорциум General Electric, Hitachi и Cameco – получила лицензию Комиссии по ядерному регулированию (NRC) США на строительство лазерного разделительного завода мощностью до 6 млн ЕРР на площадке действующего совместного предприятия GE, Toshiba и Hitachi по фабрикации топлива в Уилмингтоне, штат Северная Каролина. Планируемое обогащение - до 8%. Однако лицензирование приостановили - по причине проблем с распространением технологии. Современные технологии обогащения (диффузионная и центрифугирование) требуют специального оборудования, настолько специального, что, вобще говоря, при желании через мониторинг международных контрактов можно косвенно предположить, кто собирается «по тихому» (без ведома МАГАТЭ) обогащать уран или вести работы по этому направлению. И такой мониторинг действительно ведется. В случае, если лазерный метод обогащения докажет свою простоту и эффективность, работы по оружейному урану могут начать вести там, где это не очень нужно. Поэтому пока лазерный метод как то подминают.

К лазерным методам можно отнести так же и молекулярный метод, основанный на том, что на инфракрасных или ультрафиолетовых частотах происходит избирательное поглощение газом 235 UF 6 инфракрасного спектра, что в дальнейшем позволяет использовать метод диссоциации возбужденных молекул или химическое разделение.
Относительное содержание U-235 может быть увеличено на порядок уже в первой стадии. Таким образом, одного прохода достаточно, чтобы обеспечить обогащение урана, достаточное для ядерных реакторов.


Пояснения к «молекулярному» методу с химическим разделением.

Преимущества лазерного обогащения:

  • Потребление электроэнергии: в 20 раз менее, чем для диффузии.
  • Каскадность: число каскадов (от 0,7% до 3-5% по U-235) – менее 100, по сравнению с 150 000 центрифуг.
  • Стоимость завода – существенно меньше.
  • Экологичность: вместо гексафторида урана используется менее опасный металлический уран.
  • Потребность в природном уране – на 30% меньше.
  • На 30% меньше хвостохранилищ (хранилища отвала).

Сравнение показателей различных методов


Обогащение урана в России

В настоящее время в России действует четыре обогатительных комбината:
  • АО «Ангарский электролизный химический комбинат» (г. Ангарск, Иркутсткая область),
  • АО «ПО «Электрохимический завод» (г. Зеленогорск, Красноярский край),
  • АО «Уральский электрохимический комбинат» (г. Новоуральск, Свердловская область),
  • АО «Сибирский химический комбинат» (г. Северск, Томская область).
Россия обладает мощнейшей индустрией разделения изотопов ~40% мирового рынка, базирующемся на наиболее экономичном (на сегодня) центрифужном методе.

На 2000г. мощности по обогащению в России распределены следующим образом: 40% - для собственных нужд, 13% - для переработки отвалов зарубежных пользователей, 30% - для переработки ВОУ и НОУ, и 17% - на внешние заказы. Все это - мирный атом. Производство обогащенного урана для военных целей у нас прекращено с 1989г. К 2004г. 170 т (из ~500 т) ВОУ (высоко обогащенного урана) было переработано по соглашению ВОУ-НОУ.

На этом все. Спасибо за внимание.

9.2. По определению, изотопы элемента отличаются своими массами, но не химическими свойствами. Точнее говоря, хотя массы ядер изотопов и их строение различны, заряды ядер одинаковы, и поэтому наружные электронные оболочки практически тождественны. Таким образом, для большинства практических целей изотопы какого-либо элемента можно разделить только при помощи процессов, зависящих от массы ядра.

9.3. Хорошо известно, что молекулы газа или жидкости находятся в непрерывном движении и что их средняя кинетическая энергия зависит только от температуры и не зависит от химических свойств молекулы. Таким образом в газе, состоящем из смеси двух изотопов, средняя кинетическая энергия легких и тяжелых молекул будет одинакова. Так как кинетическая энергия молекулы равна 1/2 mv2, где m - масса и v - скорость молекулы, то очевидно, что, в среднем, скорость более легкой молекулы должна быть больше скорости более тяжелой. Поэтому, по крайней мере в принципе, любой процесс, зависящий от средней скорости молекул, можно использовать для разделения изотопов. К сожалению, средняя скорость обратно пропорциональна корню квадратному из массы, так что для газообразных соединений изотопов урана это различие очень мало. К тому же, хотя средние скорости различаются, интервалы скоростей в значительной мере перекрываются. Так, в случае газообразного шестифтористого урана более 49 % легких молекул имеют такие же малые скорости, как и 50 % тяжелых молекул.

9.4. Очевидно, нет практически осуществимого способа приложения механических сил непосредственно к отдельным молекулам; их нельзя толкать палкой или тянуть веревкой. Однако, на них воздействуют гравитационные или, если молекулы ионизованы, электрические и магнитные поля. Гравитационные силы пропорциональны массе. В очень высоком вакууме атомы U-235 и U-238 будут падать с одинаковым ускорением, но так же, как перо и камень падают с разными скоростями в воздухе, где имеются силы трения, препятствующие движению, возможны условия, при которых сочетание гравитационных и противодействующих им внутримолекулярных сил заставит тяжелые атомы двигаться отлично от легких. Электрическими и магнитными полями легче управлять, чем гравитационными или «псевдогравитационными» (т. е. полями центробежных сил) и они весьма эффективны в разделении ионов различной массы.

9.5. Кроме гравитационных или электромагнитных сил, существуют внутриатомные и внутримолекулярные силы. Это силы взаимодействия между молекулами, и ими определяются скорости химических реакций, процессов испарения и т. д. Вообще говоря, такие силы зависят от внешних электронов молекул, а не от массы ядра. Однако, там, где силы взаимодействия между отдельными атомами или молекулами приводят к образованию новых молекул, влияние массы (обычно очень малое) сказывается.

В соответствии с законами квантовой механики, уровни энергии молекул несколько меняются, причем для разных изотопов по разному. Это, как мы увидим, вызывает некоторые изменения в поведении двух изотопов в определенных химических реакциях, хотя различие в поведении значительно меньше обычного различия в химическом поведении разных элементов.

9.6. Таким образом, главными факторами, которые следует иметь в виду при выборе процесса разделения, являются: равенство средней тепловой кинетической энергии молекул при данной температуре; гравитационные или центробежные эффекты, пропорциональные массе молекул; электрические или магнитные силы, влияющие на ионизованные молекулы, и внутриатомные или внутримолекулярные силы. В некоторых процессах разделения изотопов используется только один какой-нибудь из этих факторов, и общая степень разделения может быть предсказана. В других процессах разделения несколько этих факторов встречаются одновременно, так что такое предсказание становится затруднительным.

КРИТЕРИИ ДЛЯ ОЦЕНКИ ПРОЦЕССА РАЗДЕЛЕНИЯ

9.7. Раньше, чем приступить к детальному рассмотрению отдельных процессов разделения изотопов, мы выясним, какие общие требования предъявляются к этому процессу. Главные критерии для суждения о процессе разделения изотопов описываются нами ниже.

КОЭФФИЦИЕНТ РАЗДЕЛЕНИЯ

9.8. Коэффициент разделения, или как его иногда называют, коэффициент обогащения какого-либо разделительного процесса, это отношение относительной концентрации выделяемого изотопа после обогащения к его относительной концентрации в исходном продукте. Точнее, если до разделения числа атомов изотопов с массами m1 и m2 равны, соответственно, n 1 и n 2 (на 1 г смеси изотопов), а после разделения соответствующие числа равны n" 1 и n" 2 , то коэффициент разделения равен

Это определение применимо как к одной ступени разделительной установки, так и ко всей установке, состоящей из многих ступеней. Обычно нас интересует либо коэффициент разделения одной ступени, либо общий коэффициент разделения всего процесса. Если r мало отличается от единицы, как это часто бывает для одной ступени, то иногда удобнее пользоваться величиной r-1 вместо r. Величину r-1 называют коэффициентом обогащения. В природном уране m 1 =235, m 2 =238 и n 1 /n 2 = 1/140, в 90 %-ном U-235, n" 1 /n" 2 = 9/1. Таким образом, при получении 90 %-ного U-235 из природного урана общее значение величины r должно быть равно около 1260.

ПРОИЗВОДИТЕЛЬНОСТЬ

9.9. Почти для всех способов разделения высокий коэффициент разделения достигается за счет низкого выхода. В дальнейшем, если не будет специальной оговорки, мы будем выражать производительность количеством чистого U-235. Таким образом если, например, разделительный аппарат обладает коэффициентом разделения 2 (т. е. n1" / n2" = 1/70) и производительностью в 1 грамм в день, то это означает, что из природного урана этот аппарат дает за один день продукт, состоящий из смеси 1 г U-235 и 70 г U-238.

9.10. Общее количество вещества, содержащееся в разделительной установке, называется «загрузкой». Загрузка может достигать весьма больших величин в установке, состоящей из большого числа ступеней.

ПУСКОВОЙ ПЕРИОД

9.11. В разделительной установке с большой загрузкой требуется довольно продолжительное время - недели или месяцы - от начала пуска до достижения стационарных условий работы. При расчете времени этот «пусковой период», или период установления равновесия, должен быть добавлен ко времени строительства завода.

ЭФФЕКТИВНОСТЬ

9.12. Из общего количества сырья, поступающего в разделительную установку, часть будет обогащена легкой компонентой, часть обеднена, часть останется неизмененной. Некоторое количество каждой из этих трех фракций будет потеряно и часть регенерирована. Очевидно, что важно иметь метод высоко производительного восстановления обогащенного вещества. В некоторых процессах количество неизмененного вещества ничтожно мало; но в некоторых, особенно в электромагнитном методе, описанном ниже, это - самая большая фракция, и, следовательно, эффективность, которой она восстанавливается для повторного цикла, является весьма существенной. Значимость регенерации обедненного продукта существенно зависит от степени обеднения отвала. Таким образом, вообще говоря, понятие эффективности не является вполне однозначным.

СТОИМОСТЬ

9.13. Так же, как и для всех частей проекта по урану, выигрыш во времени был значительно важнее, чем материальные издержки. Поэтому целый ряд больших разделительных установок для U-235 и дейтерия обошлись дороже, чем было бы необходимо, если бы строительство было отложено на несколько месяцев или лет, до тех пор пока не были бы разработаны более совершенные процессы.

НЕКОТОРЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ

ГАЗОВАЯ ДИФФУЗИЯ

9.14. Еще в 1896 г. лорд Рэлей показал, что смесь двух газов различных атомных весов может быть частично разделена, если заставить смесь диффундировать через пористую перегородку в вакуум. Молекулы легкого газа благодаря большей их средней скорости диффундируют через перегородку быстрее, вследствие чего прошедший через перегородку газ обогащен более легкой компонентой, а оставшийся газ (который не прошел через перегородку) обеднен легкой компонентой. Газ, максимально обогащенный легкой компонентой, получится в том случае, когда количество продиффундировавшего газа настолько мало, что не вызывает заметного обеднения оставшегося газа. Если процесс диффузии длится до тех пор, пока почти весь газ не прошел через перегородку, то среднее обогащение прошедшего газа естественно уменьшается. В следующей главе это явление рассмотрено более детально. Здесь мы только укажем, что принимая скорости диффузии обратно пропорциональными корням квадратным из молекулярных весов, мы получаем для коэффициента разделения в начальной стадии процесса диффузии, называемого «идеальным коэффициентом разделения» ?, следующее выражение:

где M 1 - молекулярный вес более легкого и M 2 - молекулярный вес более тяжелого газа. Применяя эту формулу к случаю урана, можно убедиться в трудности задачи разделения его изотопов.

Так как сам уран не является газом, то для разделения нужно применить какое-нибудь его газообразное соединение. Единственно подходящим является шестифтористый уран, UF 6 давление пара которого равно одной атмосфере при температуре 56 °C. Так как фтор имеет только один изотоп, то шестифтористыми соединениями являются U 235 F 6 и U 238 F 6 с молекулярными весами 349 и 352 соответственно.

Таким образом, если небольшому количеству шестифтористого урана дать диффундировать через пористую перегородку, то прошедший газ будет обогащен соединением U 235 F 6 с коэффициентом

который очень далек от требуемого 1260 (см. параграф 9.8).

9.15. Этот расчет мог бы создать впечатление о безнадежности разделения изотопов (исключая, возможно, изотопы водорода) при помощи диффузионных процессов. В действительности, однако, такие методы могут с успехом применяться - даже для урана. Метод, который был применен Ф. В. Астоном впервые при частичном разделении изотопов (неона), был как раз метод газовой диффузии. Позднее Г. Герц и другие, работая с многоступенчатыми диффузионными агрегатами с рециркуляцией, смогли добиться практически полного разделения изотопов неона. Так как многоступенная система с рециркуляцией необходима почти при всех методах разделения, она будет подробно описана сразу же после вступительных замечаний о различных методах, к которым она имеет отношение.

ФРАКЦИОННАЯ ПЕРЕГОНКА

9.16. Разделение при помощи перегонки смесей веществ с разными точками кипения, т. е. разными упругостями пара - процесс хорошо известный в промышленности. Разделение спирта и воды (разность температур кипения около 20 °C) обычно проводится в простом перегонном кубе без использования каких-либо аппаратов, кроме выпарного аппарата и конденсатора. Конденсируемое вещество (конденсат) может быть собрано и снова перегнано, если это нужно, несколько раз. Для разделения соединений с очень близкими точками кипения было бы слишком трудно проводить необходимое число последовательных выпариваний и конденсаций. Вместо этого применяют метод непрерывного разделения в разделительной колонне. Основной задачей этой колонны является создание потока пара. направленного вверх, и потока жидкости, стекающей вниз, - оба потока находятся в тесном соприкосновении и постоянно обмениваются молекулами. Молекулы фракции с более низкой точкой кипения имеют относительно большую тенденцию попасть в поток паров, и наоборот. Такой метод перегонки с противотоком можно применять для разделения легкой и тяжелой воды, точки кипения которых различаются на 1, 4 °C.

ПРИМЕНЕНИЕ ПРОТИВОТОКА

9.17. Метод противотока полезен не только в двухфазных (жидкость-газ) процессах перегонки, но и в других случаях разделения, таких как диффузия под влиянием температурного градиента внутри однофазных систем, или разделение под действием центробежных сил. Противоток может быть образован двумя газами, двумя жидкостями или газом и жидкостью.

ЦЕНТРИФУГИРОВАНИЕ

9.18. Мы уже отмечали, что гравитационное разделение двух изотопов возможно, так как гравитационные силы, заставляющие молекулы двигаться вниз, пропорциональны молекулярным весам, а внутримолекулярные силы, препятствующие этому движению, зависят от конфигурации электронов, а не от молекулярных весов. Так как метод центрифугирования это в сущности метод применения псевдогравитационных сил большой величины, то он всегда рассматривался, как метод, пригодный для разделения изотопов. Первые опыты с центрифугами потерпели, однако, неудачу. Дальнейшее усовершенствование быстроходных центрифуг Дж. У. Бимсом и другими привело к успешным результатам. Г. К. Юри предложил высокие цилиндрические центрифуги с противотоком. Они нашли успешное применение.

9.19. В противоточной центрифуге во внешней части вращающегося цилиндра поток пара направлен вниз, а в центральной или аксиальной области - вверх. Через поверхность раздела между двумя потоками происходит постоянная диффузия обоих типов молекул из одного потока в другой; поле радиальных сил центрифуги действует сильнее на тяжелые молекулы, чем на более легкие, так что концентрация тяжелых молекул увеличивается на периферии и уменьшается в аксиальной области; для более легких молекул картина будет обратной.

9.20. Значительным преимуществом центрифуги при разделении тяжелых изотопов типа урана является то, что коэффициент разделения зависит от разности масс обоих изотопов, а не от квадратного корня из отношения масс, как в диффузионных методах.

МЕТОД ТЕРМОДИФФУЗИИ

9.21. Из кинетической теории газов следует, что скорости диффузии газов с разными молекулярными весами различны. Возможность практического осуществления разделения изотопов при помощи термодиффузии была впервые показана при теоретическом исследовании столкновений молекул и сил взаимодействия между ними. Исследования, проведенные Энскогом и Чэпменом до 1920 г., показали, что, если в смеси газов имеется температурный градиент, то один тип молекул будет стремиться концентрироваться в холодной области, а другой - в горячей. Это стремление зависит не только от молекулярных весов, но также от сил взаимодействия между молекулами. Если газ представляет собой смесь двух изотопов, то более тяжелый изотоп может собираться в горячей области, или в холодной, или совсем не накопляется, в зависимости от природы внутримолекулярных сил. Направление разделения может измениться на обратное при изменении температуры или относительной концентрации.

9.22. Явление термодиффузии впервые было использовано для разделения изотопов Г. Клузиусом и Г. Дикелем в Германии в 1938 г. Они построили вертикальную трубу, вдоль оси которой была натянута нагретая проволока, создававшая разность температур около 600 °C между осью и периферией. Эффект получился двойной. Во-первых, тяжелые изотопы в тех веществах, которые изучались Клузиусом и Дикелем, концентрировались вблизи холодной внешней стенки, и, во-вторых, холодный газ на периферии имел тенденцию опускаться вниз, а горячий газ на оси - подниматься вверх. Такая тепловая конвекция установила встречный поток, и термодиффузия вызвала преимущественный поток тяжелых молекул к периферии через поверхность раздела между двумя потоками.

9.23. Теория термодиффузии в газах достаточно сложна; теории явления термодиффузии в жидкостях совсем нет. Однако, эффект разделения наблюдается и с успехом использовался для разделения легкого и тяжелого шестифтористого урана.

МЕТОД ХИМИЧЕСКОГО (ИЗОТОПНОГО) ОБМЕНА

9.24. Во вступительной части к этой главе мы отмечали, что есть основания считать, что разделение изотопов может быть достигнуто обычными химическими реакциями. Действительно, было найдено, что так называемая константа равновесия в простых обменных реакциях между соединениями двух разных изотопов для обоих изотопов не в точности одинакова, и таким образом в реакциях такого типа разделение возможно. Так, при каталитическом обмене атомами водорода между газообразным водородом и водой, вода содержит в три-четыре раза больше дейтерия, чем находящийся с ней в равновесии газообразный водород. Для водорода и паров воды наблюдается тот же эффект, но равновесие устанавливается быстрее. Этот метод можно приспособить для осуществления непрерывного процесса с противотоком, аналогичного применяемому при перегонке, и такие установки действительно используются для получения тяжелой воды. Общий метод хорошо понятен, однако известно, что эффективность разделения, вообще говоря, уменьшается с увеличением молекулярного веса, так что вероятность успешного применения его для тяжелых изотопов, подобных урану, невелика.

ЭЛЕКТРОЛИТИЧЕСКИЙ МЕТОД

9.25. Электролитический метод разделения изотопов основан на том открытии, что вода в электролитических ваннах, применяемых в обычном промышленном производстве водорода и кислорода, имеет повышенную концентрацию молекул тяжелой воды. Полного объяснения этого явления еще нет. Всю продукцию тяжелого водорода до войны практически получали электролитическим методом. Наибольшее количество производилось в Норвегии, но в достаточных для многих экспериментальных целей количествах тяжелый водород получался и в США.

ОБЩИЙ ОБЗОР СТАТИСТИЧЕСКИХ МЕТОДОВ

9.26. Описанные выше шесть методов разделения изотопов (диффузия, перегонка, центрифугирование, термодиффузия, изотопный обмен и электролиз) были испытаны с известным успехом либо на уране, либо на водороде, либо на обоих веществах. Каждый из этих методов основан на небольших различиях в среднем поведении молекул различных изотопов. Так как средние величины, по определению, являются предметом статистики, то все методы. зависящие в основном от среднего поведения, называются статистическими методами.

9.27. С точки зрения критериев, установленных для суждения о процессах разделения, все шесть статистических методов довольно схожи. В каждом случае коэффициент разделения невелик, так что требуется много последовательных ступеней разделения. В большинстве случаев на установках среднего размера может быть переработано относительно большое количество вещества. Загрузка и пусковой период (время установления равновесия) значительно колеблются, но обычно высоки. Сходство шести методов исключает возможность окончательного выбора метода без предварительного подробного изучения данного изотопа, требуемой производительности и т. д. Реакция обмена и электролитические методы вероятно непригодны в случае урана; точно так же никакая схема перегонки себя не оправдала. Остальные три метода были разработаны с различным успехом для урана, но не применяются для водорода.

ЭЛЕКТРОМАГНИТНЫЙ МЕТОД И ПРЕДЕЛЫ ЕГО ПРИМЕНИМОСТИ

9.28. Существование нерадиоактивных изотопов впервые было доказано при изучении ионизованных молекул газа, движущихся в электрическом и магнитном полях. Это - поля, которые являются основой так называемого масс-спектрографического или электромагнитного метода разделения изотопов. Электромагнитный метод является наиболее подходящим для определения относительного содержания (распространенности) изотопов. Он обычно применяется для проверки результатов разделения изотопов урана


Рис. 5. Магнитное поле перпендикулярно к плоскости чертежа.

методами, описанными выше. Ценность электромагнитного метода заключается в том, что с его помощью легко произвести почти полное разделение изотопов, очень быстро, с малой загрузкой и с коротким пусковым периодом. Чтобы ответить на вопрос, почему же тогда рассматриваются любые другие методы разделения, достаточно напомнить, что обычный масс-спектрограф может разделять лишь ничтожные количества вещества, обычно порядка долей микрограмма в час.

9.29. Чтобы понять причину такой ограниченной производительности, мы опишем в общих чертах принцип действия простого масс-спектрографа, впервые употреблявшегося А.Дж. Демпстером в 1918 г. Прибор изображен схематически на рис. 5. Разделяемое газообразное соединение вводится в пространство, где часть его молекул ионизуется электрическим разрядом. Некоторые из ионов проходят через щель S 1 Между S 1 и S 2 они ускоряются электрическим полем, которое сообщает им всем практически одинаковую кинетическую энергию, в тысячи раз большую средней тепловой энергии. Так как теперь все ионы обладают практически одинаковыми кинетическими энергиями, то более легкие ионы должны иметь меньшее количество движения, чем более тяжелые. Попадая в магнитное поле через щель S 2 , все ионы движутся (перпендикулярно магнитному полю) по полуокружностям с радиусами, пропорциональными их количествам движения. Поэтому легкие ионы будут двигаться по меньшей полуокружности, чем тяжелые, и, если поместить коллектор в соответствующее положение, будут собраны только легкие ионы.

9.30. Оставляя в стороне детальное рассмотрение прибора, мы отметим лишь главные причины, лимитирующие количества разделяемого вещества. Эти причины состоят в следующем: во-первых, трудно получить большие количества газообразных ионов; во-вторых, берется очень узкий пучок ионов (как показано на рисунке), так что используется только часть полученных ионов: в-третьих, слишком большие плотности ионов в пучке могут вызвать эффект объемного заряда, который мешает разделению.

Все разработанные до 1941 г. устройства, основанные на электромагнитном методе, имели большие коэффициенты разделения, но низкие производительность и эффективность. Это послужило причиной того, почему летом 1941 г. Комитет по урану отказался от применения электромагнитных методов для выделения U-235 в больших масштабах (см. параграф 4.31). Позднее, однако, было показано, что указанные ограничения не непреодолимы. Действительно, первые образцы чистого U-235 ощутимых размеров были получены посредством электромагнитного разделения, как это описано в следующей главе.

ДРУГИЕ МЕТОДЫ РАЗДЕЛЕНИЯ ИЗОТОПОВ

9.31. В дополнение к методам разделения изотопов, описанным выше, было испытано также несколько других. Метод ионной подвижности, как указывает название, основан на следующем факте.

В растворе электролита два иона, химически тождественные, но с различными массами, движутся через раствор с различными скоростями под действием электрического поля. Однако, различие в подвижности мало и легко затемняется возмущающими явлениями. А. К. Бруэр (Бюро Стандартов) сообщал, что добился разделения изотопов калия этим методом. Бруэр также получил интересные результаты с методом выпаривания. В главе XI описаны два новые электромагнитные метода - изотропный и метод ионного центрифугирования. Изотронный метод дал некоторое количество образцов порядочных размеров частично разделенного урана; на ионной центрифуге также были получены образцы, обнаруживающие разделение урана, но ее работа была неустойчива.

КАСКАДНЫЕ И КОМБИНИРОВАННЫЕ ПРОЦЕССЫ

9.32. Во всех статистических методах разделения изотопов для получения вещества, содержащего 90 % или больше U-235 или дейтерия, необходимо много последовательных ступеней разделения. Если поток движется непрерывно от одной ступени к следующей, то ряд таких последовательных ступеней разделения называется каскадом (фракционирующая колонна из отдельных тарелок является примером простого каскада разделительной установки). Теория каскада была разработана Р. П. Фейнменом (Принстон) и другими для определенного типа электромагнитного сепаратора и К. Когеном и И. Капланом (Колумбийский университет), М. Бенедиктом и А. М. Сквайрсом (корпорация Келлекс) и др. - для диффузионных процессов. Здесь мы отметим только два момента, касающиеся многоступенчатых, или «каскадных» установок.

9.33. В каскадных установках должна быть применена рециркуляция. В установке для выделения U-235 вещество, поступающее в любую ступень, кроме первой, уже обогащено U-235. Часть этого вещества может быть еще раз обогащена при прохождении через эту ступень. Остальная часть вещества будет обеднена, но все же не полностью обесценена. Она должна быть возвращена на рециркуляцию в более низкую ступень. Даже обедненное вещество из первой (наименее обогащенной) ступени нужно направить на рециркуляцию, так как некоторое количество U-235, которое в нем содержится, может быть извлечено (регенерировано).

9.34. Рассматривая установившуюся работу ступени, мы увидим, что полезный поток урана сквозь первую ступень должен быть по крайней мере в 140 раз больше, чем сквозь последнюю ступень. Полезный поток в любой ступени пропорционален относительной концентрации U-238 и таким образом уменьшается с числом пройденных ступеней. Так как любой данный образец вещества подвергается многократной рециркуляции, то количество вещества, прошедшего через любую ступень, значительно больше, чем полезный поток сквозь эту ступень, но пропорционально ему.

9.35. Мы остановились на этих вопросах, чтобы осветить ту сторону проблемы разделения, которая не всегда очевидна, а именно, что процесс разделения, являющийся лучшим для ранних ступеней разделения, не обязательно является лучшим для последующих ступеней. Факторы, которые мы отметили, различны не только для разных ступеней, но и для разных процессов разделения. Например, рециркуляция значительно проще осуществляется на диффузионной установке, чем на электромагнитной. Установка, сочетающая два или более процесса, может оказаться наилучшей для достижения требуемого конечного разделения. На более низкой (следовательно более крупной) ступени размеры потребного оборудования и мощности могут определить выбор процесса. На более высокой (меньшей) ступени эти факторы уступают удобству в эксплоатации и времени установления равновесия, которые могут сделать более выгодным другой метод.

УСТАНОВКИ ДЛЯ ТЯЖЕЛОЙ ВОДЫ

ОПЫТНАЯ УСТАНОВКА ПО МЕТОДУ ЦЕНТРИФУГИРОВАНИЯ

9.36. Следующие две главы посвящены описанию трех методов, применяемых для промышленного разделения изотопов урана. Они имеют наибольшее значение для Проекта в настоящее время. В начале работы представлялось, что центрифугирование может оказаться наилучшим методом разделения изотопов урана. и что в качестве замедлителя потребуется тяжелая вода. Мы кратко опишем опытную установку по методу центрифугирования и завод для производства тяжелой воды.

ЗАВОДЫ ДЛЯ ПРОИЗВОДСТВА ТЯЖЕЛОЙ ВОДЫ

9.37. Для концентрации дейтерия использовались два метода: фракционная перегонка воды и метод изотопного обмена водород-вода.

9.38. В первом из них применяются хорошо разработанные методы фракционной перегонки, но требуемая длительность перегонки очень велика, так как разность точек кипения легкой и тяжелой воды незначительна. По той же причине количество потребного пара очень велико. Метод очень дорог, но заводы смогли быть сооружены при минимуме исследовательских работ. Заводы были начаты стройкой фирмой Дюпон в январе 1943 г. и пущены в ход в январе 1944 г.

9.39. Второй метод производства тяжелой воды основан на каталитическом обмене дейтерием между газообразным водородом и водой. Когда такой обмен при помощи катализаторов устанавливается, концентрация дейтерия в воде, как указывалось, больше, чем в газе, приблизительно в три раза.

9.40. При осуществлении процесса изотопного обмена воду подают в колонну, противотоком к водороду и пару довольно сложным способом. На дне колонны в электролизере вода разлагается на газообразные водород и кислород, и, затем, водород, смешанный с паром, подается обратно в нижнюю часть колонны. Смесь пара и водорода проходит через слой катализатора и барботирует через стекающую вниз воду. Сущность процесса заключается в том, что часть дейтерия, находившегося первоначально в водороде, концентрируется в паре и затем переносится в стекающую вниз воду. Завод состоит из каскада колонн с самой большой колонной на входе и самыми маленькими колоннами на выходе. Построение этого каскада основано на тех же принципах, которые мы рассмотрели выше в общем обзоре методов разделения. Осуществление процесса требует очень активных катализаторов для обменных реакций. Наиболее эффективный катализатор был найден X.С. Тэйлором в Принстонском университете. Одновременно, менее активный катализатор был открыт А. фон Гроссе. Для улучшения этих катализаторов Р. Г. Крист (Колумбийский университет) сделал необходимые определения физических констант, а Г. Р. Арнольд (фирма Дюпон) провел работы по усовершенствованию одного из катализаторов.

9.41. Описанный процесс был экономичен. Ввиду необходимости применения электролитического водорода установка была расположена на территории завода Consolidated Mining and Smelting Co. в Трэйле (Британская Колумбия, Канада). Строительством завода руководил Э. Р. Мерфри и Ф. Т. Бар из фирмы Standard Oil Development Co.

ОПЫТНЫЙ ЗАВОД ПО МЕТОДУ ЦЕНТРИФУГИРОВАНИЯ

9.42. В первые дни существования Проекта наиболее подходящими методами разделения урана долго считали метод газовой диффузии и метод центрифугирования. Реализация обоих методов в широком масштабе представляла значительные трудности. После реорганизации, в декабре 1941 г., исследование и развитие метода центрифугирования продолжалось в Виргинском университете и в лаборатории Standard Oil Development Co. в Бэйуэй. Для достижения высоких скоростей на больших центрифугах серьезная работа была проведена фирмой Westinghouse Electric and Manufacturing Co. в Ист-Питсбурге.

9.43. Вследствие больших технических затруднений, возникших в связи с этим, вместо установки промышленного масштаба, была разрешена и построена опытная установка в Бэйуэй, Она успешно работала, и на ней было достигнуто разделение, приближающееся к предсказанному теорией. Позднее установка была остановлена, и работы по методу центрифугирования прекращены. Поэтому в настоящем отчете метод центрифугирования дальше не рассматривается.

РАЗДЕЛЕНИЕ ИЗОТОПОВ И ПРОИЗВОДСТВО ПЛУТОНИЯ

9.44. Наиболее важные методы разделения изотопов, которые были описаны, в принципе были известны и применялись на практике до того, как задача разделения изотопов урана приобрела первостепенное значение. Эти методы не применялись ни для урана (если не говорить о выделении нескольких микрограммов), ни для других веществ в масштабе, сколько-нибудь сравнимом с потребностями настоящего времени. Основными вопросами были стоимость, выход и время, а не принципы разделения. Другими словами, проблема была в основном техническая, а не научная; получение плутония достигло большого размаха только после того, как стал работать первый котел, и были получены первые микрограммы плутония. Но даже и после этого многие эксперименты, проведенные по плутонию, представляли существенный интерес с точки зрения применения для военных нужд как U-235, так и плутония, и для будущего развития вопросов атомной энергии. Вследствие этого, вопросы производства плутония продолжали представлять более общий интерес, чем вопросы разделения изотопов. Многие исключительно интересные специальные проблемы возникли при разрешении вопроса разделения и потребовали высококвалифицированных научных сил для их разрешения, но они пока еще должны сохраняться в секрете. По этим причинам настоящий не технический отчет делает основной упор на вопрос о плутонии и уделяет меньше места вопросам разделения. Этим мы не хотим сказать, что проблема разделения легче разрешима или что ее разрешение имеет меньшее значение.

9.45. За исключением электромагнитного метода разделения, разделение изотопов основано на небольших отличиях в среднем поведении молекул. Они используются в шести «статистических» методах разделения: (1) газовая диффузия, (2) перегонка, (3) центрифугирование, (4) термодиффузия, (5) обменные реакции, (6) электролиз. Вероятно только методы (1), (3) и (4) подходят для урана, а (2), (5) и (6) более пригодны для выделения дейтерия из водорода. Во всех «статистических» методах коэффициент разделения не велик, так что они требуют многих ступеней, но каждый метод дает возможность переработать большое количество вещества. Все эти методы были успешно опробованы до 1940 г., но ни один из них не применялся в промышленном масштабе, и ни один из них не был использован для урана. Производительность электромагнитного метода еще меньше, но коэффициент разделения больше.

Для промышленного применения электромагнитного метода существовали очевидные ограничения. Благодаря различиям характеристик процесса в различных ступенях разделения, допускалась возможность преимуществ комбинирования двух или более методов. Проблема развития одного или всех этих методов является не научной, принципиальной, а технической проблемой масштаба и стоимости. Поэтому эти вопросы могут быть освещены более кратко, чем вопросы плутония, хотя они имеют не меньшее значение. Была построена и успешно работала опытная центрифуга. Промышленная установка не была построена. Были построены также заводы для производства тяжелой воды по двум различным методам.