Прямая солнечная радиация. Радиационный баланс и его составляющие - Лекции - Материал по курсу "Учение об атмосфере" - Каталог статей - Метеорология и гидрология Прямая солнечная радиация определение

Все виды солнечных лучей достигают земной поверхности тремя путями - в виде прямой, отраженной и рассеянной солнечной радиации.
Прямая солнечная радиация - это лучи, идущие непосредственно от солнца. Её интенсивность (эффективность) зависит от высоты стояния солнца над горизонтом: максимум наблюдается в полдень, а минимум - утром и вечером; от времени года: максимум - летом, минимум - зимой; от высоты местности над уровнем моря (в горах выше, чем на равнине); от состояния атмосферы (загрязнённость воздуха уменьшает её). От высоты стояния солнца над горизонтом зависит и спектр солнечной радиации (чем ниже стоит солнце над горизонтом, тем меньше ультрафиолетовых лучей).
Отраженная солнечная радиация - это лучи солнца, отраженные земной или водной поверхностью. Она выражается процентным отношением отраженных лучей к их суммарному потоку и называется альбедо. Величина альбедо зависит от характера отражающих поверхностей. При организации и проведении солнечных ванн необходимо знать и учитывать альбедо поверхностей, на которых проводятся солнечные ванны. Некоторые из них характеризуются избирательной отражающей способностью. Снег полностью отражает инфракрасные лучи, а ультрафиолетовые - в меньшей степени.

Рассеянная солнечная радиация образуется в результате рассеивания солнечных лучей в атмосфере. Молекулы воздуха и взвешенные в нем частицы (мельчайшие капельки воды, кристаллики льда и т. п.), называемые аэрозолями, отражают часть лучей. В результате многократных отражений часть их все же достигает земной поверхности; это рассеянные солнечные лучи. Рассеиваются в основном ультрафиолетовые, фиолетовые и голубые лучи, что и определяет голубой цвет неба в ясную погоду. Удельный вес рассеянных лучей велик в высоких широтах (в северных районах). Там солнце стоит низко над горизонтом, и потому путь лучей к земной поверхности длиннее. На длинном пути лучи встречают больше препятствий и в большей степени рассеиваются.

(http://new-med-blog.livejournal.com/204

Суммарная солнечная радиация - вся прямая и рассеянная солнечная радиация, поступающая на земную поверхность. Суммарная солнечная радиация характеризуется интенсивностью. При безоблачном небе суммарная солнечная радиация имеет максимальное значение около полудня, а в течение года - летом.

Радиационный баланс
Радиационный баланс земной поверхности - разность между суммарной солнечной радиацией, поглощенной земной поверхностью, и ее эффективным излучением. Для земной поверхности
- приходная часть есть поглощенная прямая и рассеянная солнечная радиация, а также поглощенное встречное излучение атмосферы;
- расходная часть состоит из потери тепла за счет собственного излучения земной поверхности.

Радиационный баланс может быть положительным (днем, летом) и отрицательным (ночью, зимой); измеряется в кВт/кв.м/мин.
Радиационный баланс земной поверхности - важнейший компонент теплового баланса земной поверхности; один из основных климатообразующих факторов.

Тепловой баланс земной поверхности - алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются:
- радиационный баланс;
- затрата тепла на испарение;
- турбулентный теплообмен между поверхностью океана и атмосферой;
- вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и
- горизонтальная океаническая адвекция.

(http://www.glossary.ru/cgi-bin/gl_sch2.c gi?RQgkog.outt:p!hgrgtx!nlstup!vuilw)tux yo)

Измерение солнечной радиации.

Для измерения солнечной радиации служат актинометры и пиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени.

(http://www.ecosystema.ru/07referats/slo vgeo/967.htm)

Измерение интенсивности солнечной радиации производится пиранометром Янишевского в комплекте с гальванометром или потенциометром.

При замерах суммарной солнечной радиации пиранометр устанавливают без теневого экрана, при замерах же рассеянной радиации с теневым экраном. Прямая солнечная радиация вычисляется как разность между суммарной и рассеянной радиацией.

При определении интенсивности падающей солнечной радиации на ограждение пиранометр устанавливают на него так, чтобы воспринимаемая поверхность прибора была строго параллельна поверхности ограждения. При отсутствии автоматической записи радиации замеры следует производить через 30 мин в промежутке между восходом и заходом солнца.

Радиация, падающая на поверхность ограждения, полностью не поглощается. В зависимости от фактуры и окраски ограждения некоторая часть лучей отражается. Отношение отраженной радиации к падающей, выраженное в процентах, называется альбедо поверхности и измеряется альбедометром П.К. Калитина в комплекте с гальванометром или потенциометром.

Для большей точности наблюдения следует проводить при ясном небе и при интенсивном солнечном облучении ограждения.

(http://www.constructioncheck.ru/default.a spx?textpage=5)

Количество поступающей к земной поверхности прямой солнечной радиации (S) в условиях безоблачного неба зависит от высоты солнца и прозрачности . В таблице для трех широтных зон приведено распределении месячных сумм прямой радиации при безоблачном небе (возможных сумм) в виде осредненных значений для центральных месяцев сезонов и года.

Повышенный приход прямой радиации в Азиатской части обусловлен более высокой прозрачностью атмосферы в этом регионе. Высокие значения прямой радиации летом в северных районах России объясняются сочетанием высокой прозрачности атмосферы и большой продолжительностью дня

Снижает приход прямой радиации и может существенно изменить ее суточный и годовой ход. Однако при средних условиях облачности астрономический фактор является преобладающим и, следовательно, максимум прямой радиации наблюдается при наибольшей высоте солнца.

В большей части континентальных районов России в весенне-летние месяцы прямая радиация в дополуденные часы больше, чем в послеполуденные. Это связано с развитием конвективной облачности в послеполуденные часы и с уменьшением прозрачности атмосферы в это время суток по сравнению с утренними часами. Зимой соотношение до- и послеполуденных значений радиации обратное - дополуденные значения прямой радиации меньше в связи с утренним максимумом облачности и уменьшением ее во вторую половину дня. Разница между до- и послеполуденными значениями прямой радиации может достигать 25–35%.

В годовом ходе максимум прямой радиации приходится на июнь-июль за исключением районов Дальнего Востока, где происходит его смещение на май, а на юге Приморья в сентябре отмечается вторичный максимум.
Максимальная месячная сумма прямой радиации составляет на территории России 45–65% от возможной при безоблачном небе и даже на юге Европейской части она достигает лишь 70%. Минимальные значения отмечаются в декабре и январе.

Вклад прямой радиации в суммарный приход при действительных условиях облачности достигает максимума в летние месяцы и составляет в среднем 50–60%. Исключением является Приморский край, где наибольший вклад прямой радиации приходится на осенние и зимние месяцы.

Распределение прямой радиации при средних (действительных) условиях облачности по территории России в значительной степени зависит от . Это приводит к заметному нарушению зонального распределения радиации в отдельные месяцы. Особенно это проявляется в весенний период. Так, в апреле отмечается два максимума - один в южных районах и Амурской области, второй - на северо-востоке Якутии и на , что также является результатом сочетания высокой прозрачности атмосферы, большой повторяемости ясного неба и продолжительности дня.

Приведенные на картах данные относятся к действительным условиям облачности.


ЛЕКЦИЯ 3

РАДИАЦИОННЫЙ БАЛАНС И ЕГО СОСТАВЛЯЮЩИЕ

Солнечная радиация, достигшая земной поверхности, частично отражается от нее, а частично поглощается Землей. Однако Земля не только поглощает радиацию, но и сама излучает длинно­волновую радиацию в окружающую атмосферу. Атмосфера, по­глощая некоторую часть солнечной радиации и большую часть излучения земной поверхности, сама тоже излучает длинноволновую радиацию. Большая часть этого излучения атмосферы направлена к земной поверхности. Она называется встречным излу­чением атмосферы .

Разность между приходящими к деятельному слою Земли и уходящими от него потоками лучистой энергии называют радиа­ционным балансом деятельного слоя.

Радиационный баланс состоит из коротковолновой и длинно­волновой радиации. Он включает в себя следующие элементы, называемые составляющими радиационного баланса: прямая ра­диация, рассеянная радиация, отраженная радиация (ко­ротковолновая), излучение земной поверхности, встречное излучение атмосферы .

Рассмотрим составляющие радиационного баланса.

Прямая солнечная радиация

Энергетическая освещенность прямой радиации зависит от вы­соты Солнца и прозрачности атмосферы и возрастает с увеличением высоты места над уровнем моря. Облака нижнего яруса обычно пол­ностью или почти не пропускают прямую радиацию.

Длины волн солнечной радиации, достигающей земной поверх­ности, лежат в интервале 0,29-4,0 мкм. Примерно половина ее энергии приходится на фртосинтетически активную радиацию . В области ФАР ослабление радиации с уменьшением высоты Солнца происходит быстрее, чем в области инфракрасной радиа­ции. Приход прямой солнечной радиации, как уже указывалось, зависит от высоты Солнца над горизонтом, меняющейся как в те­чение суток, так и в течение года. Это обусловливает суточный и годовой ход прямой радиации.

Изменение прямой радиации в течение безоблачного дня (су­точный ход) выражено одновершинной кривой с максимумом в истинный солнечный полдень. Летом над сушей максимум мо­жет наступить до полудня, так как к полудню увеличивается за­пыленность атмосферы.

При продвижении от полюсов к экватору приход прямой ра­диации в любое время года возрастает, так как при этом увеличивается полуденная вы­сота Солнца.

Годовой ход прямой радиа­ции наиболее резко выражен на полюсах, так как зимой солнечная радиация здесь во­обще отсутствует, а летом ее приход достигает 900 Вт/м². В средних широтах максимум прямой радиации иногда на­блюдается не летом, а весной, так как в летние месяцы вследствие увеличения содер­жания водяного пара и пыли уменьшается прозрачность атмосфе­ры/Минимум приходится на период, близкий ко дню зимнего солн­цестояния (декабрь). На экваторе наблюдаются два максимума, равные примерно 920 Вт/м² в дни весеннего и осеннего равноден­ствия, и два минимума (около 550 Вт/м²) в дни летнего и зимне­го солнцестояния.

Рассеянная радиация

Максимум рассеянной радиации обычно значительно меньше, чем максимум прямой. Чем больше высота Солнца и больше загрязненность атмосферы, тем больше поток рассеянной радиации. Облака, не закрывающие Солнца, увеличивают приход рассеянной радиации по сравнению с ясным небом. Зависимость прихода рассеянной радиации от облачности сложная. Она определяется видом и количеством об­лаков, их вертикальной мощностью и оптическими свойствами. Рассеянная радиация облачного неба может колебаться более чем в 10 раз.

Снежный покров, отражающий до 70-90% прямой радиации, увеличивает рассеянную радиацию, которая затем рассеивается в атмосфере. С увеличением высоты места над уровнем моря рас­сеянная радиация при ясном небе уменьшается.

Суточный и годовой ход рассеянной радиации при ясном небе в общем соответствует ходу прямой радиации. Однако утром рас­сеянная радиация появляется еще до восхода Солнца, а вечером она еще поступает в период сумерек, т. е. после захода. В годо­вом ходе максимум рассеянной радиации наблюдается летом.

Суммарная радиация

Сумму рассеянной и прямой радиации, падающей на го­ризонтальную поверхность, называют суммарной радиацией .

Она является основной составляющей радиа­ционного баланса. Её спектральный состав по сравнению с пря­мой и рассеянной радиацией более устойчив и почти не зависит от высоты Солнца, когда, она составляет более 15°.

Соотношение между прямой и рассеянной радиацией в составе суммарной радиации зависит от высоты Солнца, облачности и за­грязненности атмосферы. С увеличением высоты Солнца доля рас­сеянной радиации при безоблачном небе уменьшается. Чем проз­рачнее атмосфера, тем меньше доля рассеянной радиации. При сплошной плотной облачности суммарная радиация полностью со­стоит из рассеянной радиации. Зимой вследствие отражения ра­диации от снежного покрова и ее вторичного рассеяния в атмо­сфере доля рассеянной радиации в составе суммарной заметно увеличивается.

Приход суммарной радиации при наличии облачности меняет­ся в больших пределах. Наибольший приход ее наблюдается при ясном небе или при небольшой облачности, не закрывающей Солнца.

В суточном и годовом ходе изменения суммарной радиации почти прямо пропорциональны изменению высоты Солнца. В су­точном ходе максимум суммарной радиации при безоблачном не­бе приходится обычно на полуденное время. В годовом ходе мак­симум суммарной радиации отмечается в северном полушарии обычно в июне, в южном - в декабре.

Отраженная радиация. Альбедо

Часть суммарной радиации, приходящей к деятельному слою Земли, отражается от него. Отношение отраженной части радиа­ции к ко всей приходящей суммарной радиации называют от­ражательной способностью , или альбедо (А) данной подстилающей поверхности.

Альбедо поверхности зависит от ее цвета, шероховатости, влажности и других свойств.

Альбедо различных естественных поверхностей (по В. Л. Гаевскому и М. И. Будыко)

Поверхность

Альбедо, %

Поверхность

Альбедо, %

Свежий сухой снег

80-95

Поля ржи и пшеницы

10-25

Загрязненный снег

40-50

Картофельные поля

15-25

Морской лед

30-40

Хлопковые поля

20-25

Темные почвы

5-15

Луга

15-25

Сухие глинистые почвы

20-35

Сухая степь

20-30

Альбедо водных поверхностей при высоте Солнца свыше 60° меньше, чем альбедо суши, поскольку солнечные лучи, проникая в воду, в значительной мере поглощаются и рассеиваются в ней. При отвесном падении лучей А = 2- 5%, при высоте Солнца мень­ше 10° А = 50- 70%. Большое альбедо льда и снега обусловлива­ет замедленный ход весны в полярных районах и сохранение там вечных льдов.

Наблюдения за альбедо суши, моря и облачного покрова про­водятся с искусственных спутников Земли. Альбедо моря позво­ляет рассчитывать высоту волн, альбедо облаков характеризует их мощность, а альбедо разных участков суши позволяет судить о степени покрытия полей снегом и о состоянии растительного покрова.

Альбедо всех поверхностей, а особенно водных, зависит от высоты Солнца: наименьшее альбедо бывает в полуденные часы, наибольшее - утром и вечером. Это связано с тем, что при ма­лой высоте Солнца в составе суммарной радиации возрастает до­ля рассеянной, которая в большей степени, чем прямая радиа­ция, отражается от шероховатой подстилающей поверхности.

Длинноволновое излучение Земли и атмосферы

Земное излучение несколько меньше излучения абсолютно черного тела при той же температуре.

Излучение земной поверхности происходит непрерывно. Чем выше температура излучающей поверхности, тем интенсивнее ее излучение. Также непрерывно происходит излучение атмосферы, которая, поглощая часть солнечной радиации и излучения земной поверхности, сама излучает длинноволновую радиацию.

В умеренных широтах при безоблачном небе излучение атмо­сферы составляет 280-350 Вт/м², а в случае облачного неба оно на 20-30% больше. Около 62-64% этого излучения направлено к земной поверхности. Приход его на земную поверхность состав­ляет встречное излучение атмосферы. Разность этих двух потоков характеризует потерю лучистой энергии деятельным слоем. Эту разность называют эффективным излучением Еэф .

Эффективное излучение деятельного слоя зависит от его тем­пературы, от температуры и влажности воздуха, а также от об­лачности. С повышением температуры земной поверхности Еэф увеличивается, а с повышением температуры и влажности возду­ха уменьшается. Особенно влияют на эффективное излучение об­лака, так как капли облаков излучают почти так же, как и дея­тельный слой Земли. В среднем Еэф ночью и днём при ясном небе в разных пунктах земной поверхности изменяется в пределах 70-140 Вт/м².

Суточный ход эффективного излучения характеризуется мак­симумом в 12-14 ч и минимумом перед восходом Солнца. Годовой ход эффективного излу­чения в районах с континентальным климатом характеризуется максимумом в летние месяцы и минимумом в зимние. В районах с морским климатом годовой ход эффективного излучения выра­жен слабее, чем в районах, расположенных в глубине континента

Излучение земной поверхности поглощается водяным паром и углекислым газом, содержащимися в воздухе. Но коротковол­новую радиацию Солнца атмосфера в значительной степени пропускает. Это свойство атмосферы называется «оранжерейным эф­фектом» , поскольку атмосфера при этом действует подобно стек­лам в теплицах: стекло хорошо пропускает солнечные лучи, на­гревающие почву и растения в теплице, но плохо пропускает во внешнее пространство тепловое излучение нагревшейся почвы. Расчеты показывают, что при отсутствии атмосферы средняя тем­пература деятельного слоя Земли была бы на 38°С, ниже факти­чески наблюдающейся и Земля была бы покрыта вечным льдом.

Если приход радиации больше расхода, то радиационный ба­ланс положителен и деятельный слой Земли нагревается. При отрицательном радиационном балансе этот слой охлаждается. Радиационный баланс днем обычно положителен, а ночью отри­цателен. Примерно за 1-2 ч до захода Солнца он становится от­рицательным, а утром, в среднем за 1 ч после восхода Солнца снова делается положительным. Ход радиационного баланса днем при ясном небе близок к ходу прямой радиации.

Изучение радиационного баланса сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной посевами и почвой, в зависимости от высоты Солнца, структуры посева, фазы развития растений. Для оценки разных приемов ре­гулирования температуры и влажности почвы, испарения и дру­гих величин определяют радиационный баланс сельскохозяйствен­ных полей при различных типах растительного покрова.

Методы измерения солнечной радиации и составляющих радиационного баланса

Для измерения потоков солнечной радиации применяются аб­солютные и относительные методы и соответственно разработаны абсолютные и относительные актинометрические приборы. Абсо­лютные приборы обычно применяют только для тарировки и по­верки относительных приборов.

Относительные приборы применяются при регуляр­ных наблюдениях на сети метеостанций, а также в экспедициях, и при полевых наблюдениях. Из них наиболее широко использу­ются термоэлектрические приборы: актинометр, пиранометр и альбедометр. Приемником солнечной радиации у этих приборов слу­жат термобатареи, составленные из двух металлов (обычно ман­ганина и константана). В зависимости от интенсивности радиации между Спаями термобатареи создается разность температур и воз­никает электрический ток различной силы, который измеряется гальванометром. Для перевода делений шкалы гальванометра в абсолютные единицы применяются переводные множители, ко­торые определяются для данной пары: актинометрический при­бор - гальванометр.

Актинометр термоэлектрический (М-3) Савино­ва - Янишевского служит для измерения прямой радиации, при­ходящий на поверхность, перпендикулярную к солнечным лучам.

Пиранометр (М-80М) Янишевского служит для измере­ния суммарной и рассеянной радиации, приходящей на горизон­тальную поверхность.

При наблюдениях приемная часть пиранометра устанавливает­ся горизонтально. Для определения рассеянной радиации пирано­метр затеняется от прямой радиации теневым экраном в виде круглого диска, закрепленного на стержне на расстоянии 60 см от приемной поверхности. При измерении суммарной радиации те­невой экран отводится в сторону

Альбедометр - это пиранометр, приспособленный также. Для измерения отраженной радиации. Для этого служит устрой­ство, позволяющее поворачивать приемную часть прибора вверх (для измерения прямой) и вниз (для измерения отраженной радиаций). Определив альбедометром суммарную и отраженную радиацию, вычисляют альбе­до подстилающей поверхности. Для полевых измерений использу­ют альбедометр походный М-69.

Балансомер термоэлектрический М-10М. Этот прибор применяется для измерения радиационного баланса под­стилающей поверхности.

Кроме рассмотренных приборов, используют также люкс­метры - фотометрические приборы для измерения освещенно­сти, спектрофотометры, различные приборы для измере­ния ФАР и т. д. Многие актинометрические приборы приспособ­лены для непрерывной записи составляющих радиационного баланса.

Важной характеристикой режима солнечной радиации являет­ся продолжительность солнечного сияния. Для ее определения служит гелиограф .

В полевых условиях наиболее часто применяются пиранометры, походные альбедометры, балансомеры и люксметры. Для на­блюдений среди растений наиболее удобны походные альбедомет­ры и люксметры, а также специальные микропиранометры.

Солнечная радиация, которая является основным источником энергии для всех процессов на Земле, в том числе и в атмосфере распространяется по всем направлениям в виде электромагнитных волн. Общий поток солнечной энергии вне атмосферы при среднем расстоянии между Землей и Солнцем (149,6х10 6 км) считают постоянной величиной. Энергетическую освещенность солнечной радиации, падающей на площадку единичной площади, перпендикулярную солнечным лучам в единицу времени на верхней границе атмосферы при среднем расстоянии от Земли до Солнца называют солнечной постоянной S о.

Ослабление солнечной радиации при ее прохождении через атмосферу.

Ослабление прямой солнечной радиации при ее прохождении от верхней границы атмосферы до земной поверхности определяется формулой Бугера

S = S 0 p m (1),

где S - энергетическая освещенность солнечной радиацией площадки у земной поверхности, перпендикулярной к солнечным лучам;

S 0 - солнечная постоянная;

p - интегральный коэффициент прозрачности атмосферы;

m - оптическая масса атмосферы, пройденной солнечными лучами.

При m= 1, т.е. при Солнце в зените,

S=S 0 p,p=S/S 0 .

Следовательно, коэффициент прозрачности показывает, какая доля солнечной радиации доходит до земной поверхности при отвесном падении солнечных лучей.

При h c = 0, т.е. при Солнце на горизонте,mравна не бесконечности, а 35.

Ослабление радиации путем поглощения и рассеяния можно разделить на две части: ослабление постоянными газами (идеальной атмосферой) и ослабление водяным паром и аэрозольными примесями.

Соотношение коэффициента прозрачности идеальной атмосферы (р i) к коэффициенту прозрачности реальной атмосферы (р) называетсяфактором мутности (К м ). Он показывает, какое число идеальных атмосфер нужно взять, чтобы получить такое же ослабление радиации, какое производит реальная атмосфера.

К м = lg р/ lg р i

Значения К м определяются с точностью до сотых.

Приход солнечной радиации на земную поверхность.

Энергетическая освещенность прямой солнечной радиацией горизонтальной поверхности (S  инсоляция) вычисляется по формуле:

S = S sin h c ,

где S - прямая радиация на перпендикулярную поверхность;

h c - высота Солнца в момент, когда вычисляется S.

Энергетическая освещенность суммарной солнечной радиации вычисляется по формуле:

Q = S + D ,

где S- энергетическая освещенность прямой радиации на горизонтальную поверхность;

D- энергетическая освещенность рассеянной солнечной радиации.

Эти мгновенные (правильнее - секундные) значения выражаются в кВт/м 2 с точностью до сотых.

Действительные часовые, суточные, месячные и годовые энергетические экспозиции солнечной радиации на горизонтальную поверхность определяются путем численного интегрирования функций, выражающих зависимость радиации от времени. Энергетические экспозиции за определенный интервал времени называют часовыми, суточными, месячными и годовыми суммами соответствующей (прямой, рассеянной, суммарной) радиации и обозначают  ч S, сут D. Все эти суммы выражаются в МДж/м 2 , часовые и суточные с точностью до сотых, месячные - до единиц, годовые до десятков.

Отражение и поглощение солнечной радиации деятельным слоем.

Коэффициент отражения солнечной радиации деятельным слоем - A (альбедо) - определяется как отношение:

A = Q отр / Q ,

где Q отр - отраженная радиация, т.е. отразившаяся часть суммарной радиации (кВт/м 2).

Q- суммарная солнечная радиация (кВт/м 2).

Альбедо выражается в долях единицы с точностью до сотых или в процентах. Часть суммарной радиации (кВт/м 2), поглощенная деятельным слоем, составляет:

Q п = Q (1 – A )

Эту величину (Q п) называют поглощенной радиацией или коротковолновым радиационным балансом. В последнем случае ее обозначают В к

Излучение деятельного слоя.

Энергетическая светимость деятельного слоя (Е с) вычисляется по формуле:

E с =  T 0 4 ,

где - коэффициент теплового излучения, называемый также коэффициентом черноты,

 - постоянная Стефана-Больцмана, 5, 67 х10 -8 вт/ м 2 х К

Т 0 - температура деятельного слоя (К).

Произведение Т 0 4 при разных температурах затабулировано (приложение 1).

Эти же значения характеризуют поглощательные свойства деятельного слоя по отношению к падающей на него длинноволновой радиации.

Излучение деятельного слоя называют также собственным излучением. Мгновенные (секундные) значения Е с и энергетические экспозиции этого излучения за различные интервалы (суммы) выражаются в тех же единицах и с тем же округлением, что и соответствующие характеристики коротковолновой радиации.

Встречное излучение.

Энергетическая освещенность деятельного слоя встречным излучением при ясном небе определяется по формуле Брента:

Е А =Т А 4 (D+G)

где -Т А - температура воздуха (К) на высоте 2 м над земной поверхностью, е -парциальное давление водяного пара (гПа) на той же высоте,DиG- постоянные (D=0,61,G=0,05).

Поглощенная (Е А п) и отраженная (Е А отр) деятельным слоем части встречного излучения определяются соотношениями:

Е А п = Е А , Е А отр = (1- ) Е А

где Е А, Е А п и Е А отр выражаются в тех же единицах, что и Е с.

Эффективное излучение и радиационный баланс деятельного слоя.

Эффективное излучение деятельного слоя (Е эф) при ясном небе определяется соотношением:

E эф = E с - E в ,

где Е с - собственное излучение;

Е в - встречное излучение.

 - коэффициент черноты.

Эффективное излучение, взятое со знаком минус, представляет собой длинноволновый радиационный баланс

В д = E в - E с

Эффективное излучение при наличии облачности характеризуется соотношением:

Е эф о = Е эф я (1-С н n н -С с n с -С в n в),

где Е эф о - эффективное излучение при облачности разного яруса,

Е эф я - эффективное излучение при ясном небе,

С- эмпирические облачные коэффициенты для облачности разного яруса (С н - нижнего, равный 0,076, С с - среднего, равный 0,052, и С в - верхнего -0,022).

n н,n с, n в - количество облаков в баллах по ярусам

Радиационный баланс деятельного слоя характеризуется соотношением:

R = (S + D ) (1- A ) - E эф

Мгновенные значения радиационного баланса деятельного слоя и его суммы выражаются в тех же единицах и с таким же округлением, как и все остальные потоки радиации.

Если бы атмосфера пропускала к поверхности земли все солнечные лучи, то климат любого пункта Земли зависел бы только от географической широты. Так и полагали в древности. Однако при прохождении солнечных лучей через земную атмосферу происходит, как мы уже видели, их ослабление вследствие одновременных процессов поглощения и рассеивания. Особенно много поглощают и рассеивают капли воды и кристаллы льда, из которых состоят облака.

Та часть солнечной радиации, которая поступает на поверхность земли после рассеяния ее атмосферой и облаками, называется рассеянной радиацией. Та часть солнечной радиации, которая проходит через атмосферу не рассеиваясь, называется прямой радиацией.

Радиация рассеивается не только облаками, но и при ясном небе - молекулами, газов и частицами пыли. Соотношение между прямой и рассеянной радиацией изменяется в широких пределах. Если при ясном небе и вертикальном падении солнечных лучей доля рассеянной радиации составляет 0,1% прямой, то


при пасмурном небе рассеянная радиация может быть больше прямой.

В тех частях земли, где преобладает ясная погода, например в Средней Азии, основным источником нагревания земной поверхности является прямая солнечная радиация. Там же, где преобладает облачная погода, как, например, на севере и северо-западе Европейской территории СССР, существенное значение приобретает рассеянная солнечная радиация. Бухта Тихая, расположенная на севере, получает рассеянной радиации почти в полтора раза больше, чем прямой (табл. 5). В Ташкенте, наоборот, рассеянная радиация составляет менее 1 / 3 прямой радиации. Прямая солнечная радиация в Якутске больше, чем в Ленинграде. Объясняется это тем, что в Ленинграде больше пасмурных дней и меньше прозрачность воздуха.

Альбедо земной поверхности. Земная поверхность обладает способностью отражать падающие на нее лучи. Количество поглощенной и отраженной радиации зависит от свойств поверхности земли. Отношение количества отраженной от поверхности тела лучистой энергии к количеству падающей лучистой энергии называется альбедо. Альбедо характеризует отражательную способность поверхности тела. Когда, например, говорят, что альбедо свежевыпавшего снега равно 80-85%, это означает, что 80-85% всей падающей на снежную поверхность радиации отражается от нее.

Альбедо снега и льда зависит от их чистоты. В промышленных городах в связи с осаждением на снег различных примесей, преимущественно копоти, альбедо меньше. Наоборот, в арктических областях альбедо снега иногда достигает 94%. Так как альбедо снега по сравнению с альбедо других видов поверхности земли наиболее высокое, то при снежном покрове прогревание земной поверхности происходит слабо. Альбедо травяной растительности и песка значительно меньше. Альбедо травяной растительности равно 26%, а песка 30%. Это означает, что трава поглощает 74% солнечной энергии, а пески - 70%. Поглощенная радиация идет на испарение, рост растений и нагревание.