Графическая культура в контексте информационной компетентности. Графическая культура в процессе обучения информатике студентов педагогического вуза Графическая культура определение

СУЩНОСТЬ ПОНЯТИЯ «ГРАФИЧЕСКАЯ КУЛЬТУРА»

Раскроем суть понятия «графическая культура», для этого рассмотрим следующую цепочку: сначала остановимся на основном понятии «культура», затем раскроем суть термина «математическая культура», и в конечном итоге обратимся к понятию «графическая культура».

В словаре философских терминов под культурой понимается «совокупность искусственных объектов (идеальных и материальных), созданных человеком в процессе освоения природы и обладающих структурами, функциональными и динамическими закономерностями (общими и специальными)» .

В педагогическом словаре культура определяется как « исторически определенный уровень развития общества, творческих сил и способностей человека, выраженный в типах и формах организации жизни и деятельности людей, в их взаимоотношениях, а также в создаваемых ими материальных и духовных ценностях. Культура в образовании выступает как его содержательная составляющая, источник знаний о природе, обществе, способах деятельности, эмоционально-волевого и ценностного отношения человека к окружающим людям, труду, об щению и т. д.» .

А. Я. Флиер рассматривает много подходов к определению культуры. Мы будем придерживаться следующего определения: «Культура – мир символических обозначений явлений и понятий –языков и образов, созданный людьми с целью фиксации и трансляции социально значимой информации, знаний, представлений, опыта, идей и т.п.» .

Математика в современном мире занимает почетное место, и ее роль в науке постоянно возрастает. Математика является мощным и универсальным методом познания. Изучение математики совершенствует общую культуру мышления, приучает логически рассуждать, воспитывает точность. Физик Н. Бор говорил, что математика – это больше, чем наука, – это язык».

По словам О. Шпенглера, каждая культура имеет свою математику, поэтому математика призвана формировать у обучающихся свою, особую культуру – математическую.

Термин «математическая культура» появился в 20 – 30-е года ХХ века.

Дж. Икрамов говорит, что математическую культуру школьника стоит понимать как «совокупность математических знаний, умений и навыков» . Он выделяет компоненты математической культуры, важнейшими из которых являются: математическое мышление и математический язык. Под «математическим языком» стоит понимать совокупность всех средств, помогающих выражать математическую мысль. Согласно Д. Икрамову «языки математических символов, геометрических фигур, графиков, диаграмм, а также система научных терминов вместе с элементами естественного языка составляют математический язык» .

«Под математическим мышлением, в основе которого лежат математические понятия и суждения, понимается совокупность взаимосвязанных логических операций; оперирование как свернутыми, так и развернутыми структурами; знаковыми системами математического языка, а также способность к пространственным преставлениям, запоминанию и воображению» .

Многие авторы рассматривают математическую культуру не школьника, а студента или специалиста. Например, С. А. Розанова рассматри вает математическую культуру студента технического университета, как выработанную систему математических знаний, умений и навыков, позволяющих использовать их в (быстро меняющихся условиях) профессиональной и общественно-поли тической деятельности, повышающую духовно-нравственный по тенциал и уровень развития интеллекта личности . С.А. Розанова выделяет параметры математической культуры, и разбивает их на два класса в зависимости от значимости. «В первый класс входят знания, умения, навыки, формируе мые посредством математики и необходимые в профессиональ ной, общественно-политической, духовно-нравственной деятель ности и повышающие уровень развития интеллекта студента.

Ко второму классу можно отнести параметры, влияющие непосредственно на развитие интеллекта и опосредованно на другие параметры первого класса: математическое мышление, профессиональное мышление, нравственное развитие, эстети ческое развитие, мировоззрение, способность к самообучению, качество ума (счетная способность, речевая гибкость, речевое восприятие, пространственная ориентация, память, способность к рассуждению, скорость восприятия информации и принятия решения)» .

С.А. Розанова утверждает, что «математическая культура – ядро профессиональной культуры специалиста» .

Но о чьей бы математической культуре мы не говорили, о культуре школьника, студента или специалиста, математическая культура формируется у человека, у личности.

Сведем в одну таблицу несколько определений и составов математической культуры личности данных авторами.

Таблица 1 – дефиниция и состав математической культуры у современных авторов .

Таблица 1

Автор

Определение МКЛ

Состав, компоненты МКЛ

Т. Г. Захарова

МКЛ – собственно профессиональный компонент профессиональной культуры специалиста – математика

    математические знания;

    выделение человеком математической ситуации из всего разнообразия ситуации в окружающем мире;

    наличие математического мышления;

    использование всего разнообразия средств математики;

    готовность к творческому саморазвитию, рефлексия

О. В. Артебякина

МКЛ – сложная система, возникающую как интегративный результат взаимодействия культур, отражающий различные аспекты математического развития: знаниевая, самообразовательная и языковая культуры

    математические знания и математические умения: математическое самообразование;

математический язык

Д. У. Биджиев

МКЛ – выступает как интегративное личностное образование, характеризующееся наличием достаточного запаса математических знаний, убеждений, навыков и норм деятельности, поведения в совокупности с опытом творческого осмысления особенностей научного поиска

    математический тезаурус;

    математическая ситуация;

    философия математики;

    средства математики в профессионально-педагогической деятельности;

    рефлексия и готовность к творческому саморазвитию

О.Н. Пустобаева

Математическая культура экономиста – это интегрированный результат развития его личности, основанный на преобразовании математических знаний в математические модели и использовании для их разрешения математических методов, отражающий уровень интеллектуального развития и индивидуально-творческий стиль профессиональной деятельности как существенный элемент общей культуры современного человека

    фундаментальные математические знания, умения и навыки;

    личностная и профессиональная направленность;

    информационные навыки как необходимое качество специалиста информационного общества

Е. В. Путилова

    математическое моделирование как метод познания научной картины мира;

    методы математики;

    математическое мышление;

    язык математики

В. Н. Худяков

Математическая культура специалиста – это интегральное образование личности специалиста, основывающееся на математическом познании, математической речи и мышления, отражающее технологию профессиональной деятельности и способствующее переводу ее операционного состава на технологический уровень, индивидуально-творческий стиль профессиональной деятельности и творческое воплощение ее технологии

    когнитивный компонент;

    мотвационно-ценностный компонент;

    операционно-деятельностный компонент

В. И. Снегурова

Математическая культура человека может быть определена как совокупность присвоенных им объектов общей математической культуры

    графическая составляющая;

    логическая составляющая;

    алгоритмическая составляющая

З. Ф. Зарипова

Математическая культура инженера – это сложная интегральная система личностных и профессиональных качеств будущего инженера, характеризующая степень развития (саморазвития) личности, индивидуальности и отражающая синтез математических знаний, умений, навыков, интеллектуальных способностей, совокупность эмоционально-ценностных ориентации, мотивов и потребностей профессионального совершенства

    познавательно-информационный (эрудиция и информационная емкость) блок;

    эмоционально-ценностный блок;

    потребностно-мотивационный блок;

    интеллектуальный блок;

    блок самореализации;

    деятельностный блок

И. И. Кулешова

МКЛ – аспект профессиональной культуры, который дает основу для полного раскрытия творческого потенциала будущих инженеров

    математические знания, умения и навыки;

    математическое самообразование;

    математический язык

В. Н. Рассоха

Математическая культура будущего инженера – это личностное качество, представляющее собой совокупность взаимосвязанных базовых компонентов: математических знаний и умений, математического языка, математического мышления, профессионального самообразования (математического)

    математические знания и умения;

    умение математического самообразования;

    математический язык;

    математическое мышление

С. А. Розанова

Математическая культура студента технического вуза - приобретенная система математических знаний, умений и навыков, позволяющая использовать их в быстро меняющихся условиях профессиональной и общественно-политической деятельности, повышающая духовно-нравственный потенциал и уровень развития интеллекта личности

    первый класс: знания, умения, навыки, формируемые посредствам математики, необходимые в профессиональной, общественно-политической, духовно-нравственной деятельности и повышающие уровень развития интеллекта студента технического вуза;

    второй класс:

    математическое мышление;

    профессиональное мышление;

    нравственное развитие

    эстетическое развитие;

    мировоззрение;

    способность к самообучению;

    качество ума (счетная способность, речевая гибкость, речевое восприятие, пространственная ориентация, память, способность к рассуждению, скорость восприятия информации и принятия решения)

Д. И. Икрамов

МКЛ – система математических знаний, умений и навыков, органично входящих в фонд общей культуры учащихся, и свободное оперирование ими в практической деятельности

    математическое мышление;

    математический язык

Г. М. Булдык

Математическая культура экономиста – сформированная система математических знаний и навыков и умения использовать их в разных условиях профессиональной деятельности в соответствии с целями и задачами

З. С. Акманова

МКЛ – сложное, динамичное качество личности, характеризующее готовность и способность студента приобретать, использовать и совершенствовать математические знания, умения и навыки в профессиональной деятельности

    ценностно-мотивационный;

    коммуникативный;

    когнитивный;

    операционный;

    рефлексивный

Основное назначение математических дисциплин состроит в подготовке математически грамотных людей, умеющих применять усвоенные математические методы.

Под графической культурой в широком значении понимается «совокупность достижений человечества в области создания и освоения графических способов отображения, хранения, передачи геометрической, технической и другой информации о предметном мире, а также созидательная профессиональная деятельность по развитию графического языка» .

А.В. Костюков в своей диссертационной работе говорит о том, что в узком значении графическая культура рассматривается как уровень совершенства, достигнутый личностью в освоении графических методов и способов передачи информации, который оценивается по качеству выполнения и чтения чертежей .

В контексте педагогической подготовки графическую культуру будущего учителя стоит понимать как систему организации учителем наглядности обучения посредством графических изображений, которая характеризуется мерой освоения накопленного человечеством опыта в области дизайна, черчения, компьютерной графики и анимации .

А. В. Петухова в понятие графической культуры инженера включает «понимание механизмов эффективного использования графических отображений для решения профессиональных задач; способность адекватно интерпретировать профессиональную графическую информацию; умение отображать результаты инженерной деятельности в графической форме».

Рассматривая процесс развития графической культуры как сложный многоплановый поэтапный процесс графической подготовки, имеющий различные уровни развития (от первоначального графического знания к всестороннему овладению и творческому осмыслению способов их реализации в профессиональной деятельности), М.В. Лагунова, выделила следующую иерархические ступени графической культуры в обучении:

Элементарная графическая грамотность;

Функциональная графическая грамотность;

Графическая образованность;

Графическая профессиональная компетентность;

Графическая культура.

Под элементарной графической грамотностью М.В. Лагунова предлагает рассматривать уровень графической подготовки, которая характеризуется тем, что учащийся знает элементарные закономерности теории изображений, основанные на общем геометрическом образовании, имеет практические навыки работы с чертежным инструментом, полученным в курсах общеобразовательной школы.

П.И. Совертков в своей работе выделяет следующие уровни графической грамотности учащихся, проходящих олимпиадную подготовку и работающих над исследовательскими проектами:

Элементарная графическая грамотность:

    обучаемый знает элементарные закономерности теории изображений в параллельной проекции (параллелограмм, куб, параллелепипед, призма, тетраэдр, окружность в виде эллипса, цилиндр, конус);

    имеет навыки рисования основных примитивов в графических редакторах Paint , Word ; умеет преобразовать основные фигуры;

Функциональная графическая грамотность: обучаемый

    знает основные положения теории изображений в параллельной проекции (сохраняется параллельность прямых, сохраняется простое отношение отрезков на одной или параллельных прямых, изображение сопряженных диаметров эллипса);

    умеет проводить анализ метрических отношений на оригинале и учитывает их при изображении фигуры;

    умеет из основных примитивов комбинировать новую фигуру, учитывая сопряжение фигур по общим элементам;

    умеет закрасить часть данной фигуры, объединение или пересечение двух многоугольников;

    умеет обозначать в фигуре данные элементы (вершины, стороны, углы).

Под графической образованностью школьника следует понимать наличие широкого кругозора, характеризующегося широтой и объемом графических знаний, умений и навыков. Качество образования следует оценивать по уровню полученных знаний и сформированных личных качеств будущего специалиста, нацеленного на выполнение социальной и профессиональной функций. Графическая образованность – это способность применять графические знания в новой, ранее незнакомой ситуации, владение изученным материалом и применение его в рамках различных предметов.

Под графической профессиональной компетентностью будем понимать широкий кругозор, эрудицию личности в области графических знаний и свободное оперирование ими в учебной деятельности.

Под графической культурой учащихся школы будем понимать совокупность знаний о графических методах, способах, средствах, правилах отображения и чтения информации, ее сохранения, передачи.

Графическая культура учащихся .

В последнее время в некоторых школах вошло в привычку на уроках стереометрии вместо изображения фигур на классной доске использовать только экранные средства или таблицы. Все эти средства, безусловно, нужны и полезны, без них мы уже не представляем себе современный урок стереометрии. Но использовать их надо разумно, не вытесняя ими традиционного рисования на классной доске. Мало показывать готовые изображения в учебнике или на экране, школьники должны видеть и сам процесс их построения. Наблюдая за тем, с чего учитель начинает выполнять чертеж, в какой последовательности и как проводит линии, когда и как использует чертежные инструменты, учащиеся получают важнейшие сведения об искусстве черчения.

Если, решая задачу в классе, учитель использует таблицу с готовым чертежом, то он, естественно, сократив время, успеет решить еще одну задачу. Так можно поступать в отдельных случаях. Но систематически использовать заранее заготовленную таблицу с рисунком не целесообразно, так как при этом ученики лишены возможности видеть процесс изготовления рисунка.

Чтобы выработать необходимые умения, учащиеся и сами должны рисовать, прежде всего в тетрадях. На уроках стереометрии учащимся нужно объяснять, что первый рисунок той или другой фигуры может быть и неудачным, поэтому во избежание неаккуратных изображений в тетрадях первые эскизы лучше всего выполнять на черновиках. Можно предложить нескольким учащимся выполнить рисунок на кодопленке, а потом продемонстрировать рисунки всему классу. Глядя на эти изображения, учащиеся обсуждают и выбирают наилучшее расположение фигуры, исправляют ошибки, предлагают свои варианты.

На уроках стереометрии всю работу по воспитанию графической культуры учащихся не следует переносить на то время, когда начнется рассмотрение многогранников. О ней нужно заботиться постоянно. Уже на первых уроках следует предупредить учащихся, что прямую, лежащую в данной плоскости, лучше изображать на всей очерченной части этой плоскости, т. е. так, как показана прямая а на рис.1, изображение прямой b на том же рисунке следует признать неудачным.

Большое значение имеет и аккуратное написание букв на рисунке. Так, буквы, обозначающие прямую, нужно писать по одну сторону от нее, чтобы они не пересекали другие линии рисунка. Буквы, которые обозначают плоскости, лучше писать сбоку, чтобы они не мешали последующим построениям. Изображая линию пересечения двух плоскостей, нужно соединять отрезком точки пересечения границ частей плоскостей. С этой точки зрения рис. 2 ,а надо считать неудачным, лучшим является рис. 2,б

Большая часть рассматриваемых в стереометрии задач связана с изображением многогранников, тел вращения и их комбинаций. Поэтому очень важно развить у учащихся навыки их грамотного изображения. Прежде всего целесообразно дать учащимся некоторые рекомендации перед началом работы по изображению многогранников и тел вращения:

Пирамиду лучше рисовать, начиная с основания. Призму можно начинать рисовать как с верхнего основания, так и с нижнего.

Основание.многогранника - самая ответственная часть чертежа. Полезно подумать, как изображается данный многоугольник по правилам проектирования, какие ребра изображаемого основания будут видимыми, а какие - нет.

Когда речь идет о пирамиде, то вопрос о ее видимых и невидимых ребрах не всегда решается однозначно: это зависит не только от вида проекции, но и от соотношения размеров многогранника. Например, в зависимости от отношения высоты правильной четырехугольной пирамиды к ребру ее основания, приходится или три ее ребра изображать штриховыми линиями, или только одно, или ни одного (рис. 3,а- в).

Рисуя многогранник в тетради, желательно вначале изобразить его тонкими линиями. Только убедившись, что рисунок соответствует задаче, нагляден и удачно расположен, можно окончательно обвести его видимые и невидимые линии.

Если на одном рисунке изображается вся фигура, а на другом - какая-то ее часть, то необходимо следить за тем, чтобы на обоих рисунках были одинаковыми и ориентация, и буквенные обозначения.

Если требуется изобразить комбинацию некоторых фигур, то вписанную фигуру изображают штриховыми линиями, хотя возможны и другие договоренности.

В рисунках к задачам необходимо соблюдать метрические соотношения между элементами фигур.

Выполняя на уроках стереометрии чертежи неплоских фигур, учащиеся руководствуются свойствами параллельного проектирования. А допустимо ли рекомендовать им пользоваться не произвольной параллельной проекцией, а лишь фронтальной диметрической или изометрической? Допустимо. Когда многогранники изображаются преимущественно во фронтальной диметрической проекции, а фигуры вращения - в изометрии, то чертежи бывают намного удачнее. Конечно, не следует браковать хорошие рисунки, выполненные в произвольной параллельной проекции, но, воспитывая графическую культуру, нужно чаще побуждать учащихся применять те виды проекций, которые они изучали на уроках черчения.

И еще одно замечание. Работу по воспитанию графической культуры учащихся следует теснейшим образом увязывать с работой по развитию их пространственных представлений. Многочисленные факты свидетельствуют, что одной из главных причин низкой графической культуры является недостаточная развитость пространственных представлений учащихся. Чтобы научить школьников представлять пространственные объекты, грамотно их изображать, правильно «читать» рисунки, желательно сопоставлять чертежи пространственных фигур с соответствующими моделями - каркасными, стеклянными и др. Конечно, нельзя злоупотреблять моделями на уроках стереометрии. Но на первых уроках по этому предмету или в начале изучения каждого раздела материальные модели очень нужны.

Опыт показывает, что если учащийся сопровождает рисунком какую-либо задачу на вычисление или на доказательство, то он главное внимание обращает на вычисления, тождественные преобразования и т. п., а рисунок рассматривает как что-то второстепенное. Следовательно, чтобы повысить графическую культуру учащихся нужны и специальные упражнения, нацеленные на достижение поставленной цели.

УДК 378.147:766

М. В. Матвеева

ОСНОВЫ ФОРМИРОВАНИЯ ГРАФИЧЕСКОЙ КУЛЬТУРЫ СТУДЕНТОВ ИНЖЕНЕРНЫХ СПЕЦИАЛЬНОСТЕЙ ВУЗОВ

Рассмотрены теоретические и практические аспекты формирования графической культуры студентов инженерных специальностей в современных условиях. Выявлены возможности использования компьютерных технологий для формирования графической культуры студентов при изучении дисциплин «начертательная геометрия» и «инженерная графика».

Ключевые слова: графическая культура, графическая подготовка, компьютерная графика, инженерная графика, учебно-методическое обеспечение, электронные обучающие продукты.

Графическая культура является одной из самых важных составляющих профессиональной культуры инженера. В настоящее время наличие графической культуры необходимо любому образованному человеку. Это вызвано широким распространением компьютерной графики, появлением большого количества графической, знаковой и символьной информации во всех сферах общественной и производственной жизни. Графические изображения являются одним из главных средств познания окружающего мира, инструментом творческого и пространственного мышления личности.

Под графической культурой в широком значении понимается «совокупность достижений человечества в области создания и освоения графических способов отображения, хранения, передачи геометрической, технической и другой информации о предметном мире, а также созидательная профессиональная деятельность по развитию графического языка» .

В узком значении графическая культура рассматривается как уровень совершенства, достигнутый личностью в освоении графических методов и способов передачи информации, который оценивается по качеству выполнения и чтения чертежей .

Графическая культура как элемент профессиональной культуры специалиста является «интегративным качеством, характеризующимся единством графических знаний, умений и навыков, ценностным отношением к результатам графической деятельности и обеспечивающим профессиональное творческое саморазвитие» .

В контексте инженерной подготовки «графическая культура как элемент общей культуры инженера характеризуется высоким уровнем знаний, умений и навыков в области визуализации, пониманием механизмов эффективного использования графических отображений для решения профессиональных задач, умением интерпретировать и оперативно отображать результаты на приемлемом эстетическом уровне» .

В качестве структурных компонентов графической культуры, определяющих ее интегративное це-

лое, исследователями выделяются следующие: когнитивный, мотивационно-ценностный, операционно-деятельностный и индивидуально-творческий .

Наиболее значимым из них в плане формирования и развития графической культуры является, на наш взгляд, аксиологический, то есть мотивационно-ценностный или ценностно-смысловой, отвечающий за осознание субъектом необходимости приобретения и совершенствования графических знаний и умений, а также признание их ценности для будущей профессиональной деятельности и личностного опыта.

Нельзя не согласиться с тем, что когнитивный, деятельностный и творческий компоненты являются структурными составляющими и показателями уровня графической культуры личности, так же как и уровня общей культуры и образованности человека. Познавательная и творческая деятельность является основой образовательного процесса.

Помимо этих структурных составляющих графической культуры необходимо выделить способность эстетического восприятия окружающего мира и, как следствие, способность создавать, моделировать, конструировать целесообразные, гармоничные и красивые объекты. Это особенно важно в инженерной деятельности, так как конвейеризация и поточность производства, стандартизация продукции фактически лишили производителя возможности творить красоту. А ведь красота не только доставляет духовную радость и наслаждение, но и имеет огромную познавательную и воспитательную роль в обществе. В средней и высшей технической школе имеются существенные пробелы в направлении эстетической подготовки инженерных кадров. Для решения этой проблемы необходим пересмотр методического содержания дисциплин с обязательной ориентацией на практические задания по созиданию элементов красоты окружающей среды .

Таким образом, при целенаправленном формировании графической культуры обучающихся должны быть учтены все ее структурные компо-

ненты и обеспечено их развитие с учетом современных условий образования и производства.

Быстрое развитие информационных технологий привело к существующей трансформации содержания инженерного труда, что вызвало изменение требований к подготовке выпускника вуза и оценке его профессиональных качеств. Профессиональная графическая компетентность инженера предполагает уровень осознанного применения графических знаний, умений и навыков, опирающийся на знания функциональных и конструктивных особенностей технических объектов, опыт графической профессионально ориентированной деятельности, свободную ориентацию в среде графических информационных технологий.

Современное производство ориентировано на компьютеризацию проектной и конструкторской деятельности, поэтому при подготовке инженерных кадров необходимо соответствующим образом осуществлять графическую подготовку будущих специалистов.

На начальной стадии обучения в инженерном вузе изучаются такие дисциплины, как «начертательная геометрия», «инженерная и компьютерная графика», которые способствуют развитию пространственного воображения, творческого и конструктивного мышления будущего специалиста. Студенты получают навыки работы с абстрактными геометрическими моделями объектов, приобретают знания по правилам выполнения чертежей, оформлению конструкторской документации, осваивают применение графических редакторов для компьютеризации чертежных работ.

Графические дисциплины являются основополагающими в формировании профессиональной и графической культуры обучающихся. Поэтому необходимо, чтобы методика преподавания графических дисциплин была в большей степени ориентирована на развитие образного, логического, абстрактного мышления, давала возможность формировать статические и динамические пространственные представления студентов. При этом необходимо использовать все виды аудиторной и внеаудиторной работы для осуществления эффективной графической подготовки студентов, а также активизировать и разнообразить их учебно-познавательную деятельность посредством инновационных педагогических технологий.

При таком подходе предполагается создание «визуальной учебной среды - совокупности условий обучения, в которых акцент ставится на использование резервов визуального мышления. Эти условия предполагают наличие, как традиционных наглядных средств, так и специальных средств и приемов, позволяющих активизировать работу зрения с целью получения продуктивных результатов» .

Основной формой аудиторной работы является лекция. Для активизации деятельности студентов, а также для экономии времени целесообразно использовать презентации лекций на электронном носителе. Несомненным преимуществом лекций-презентаций является отсутствие мела и тряпки, четкость изображений и надписей, возможность вернуться к предыдущим слайдам и восстановить пропущенный материал. В качестве недостатков можно отметить возможность сбоя техники во время лекции, отсвечивание в яркую погоду, сложность считывания графической информации с экрана и воспроизведения ее в тетради.

Использование компьютерной техники при чтении лекций дает возможность за короткое время преподнести большое количество информации о графических объектах, в том числе наглядно представить их пространственные формы, продемонстрировать образование поверхностей в динамике посредством использования элементов мультимедиа. Это помогает улучшить пространственные представления обучающихся, развивает способность воспринимать графическую информацию с экрана. Таким образом, использование лекций-презентаций при изучении графических дисциплин, несомненно, является эффективным средством для успешного формирования графической культуры студентов. Такие лекции, на наш взгляд, должны быть включены в качестве обязательного элемента при построении и отборе методического содержания курсов.

На практических занятиях особое внимание следует уделить решению задач на закрепление теоретического лекционного материала. В курсе начертательной геометрии студенты приобретают навыки сопоставления пространственных объектов с их плоскими изображениями - проекциями. Метод проекций лежит в основе выполнения любого чертежа - машиностроительного, архитектурного или топографического. Решение позиционных и метрических задач по начертательной геометрии способствует развитию не только пространственного мышления студентов, но и абстрактно-логического, обучает алгоритмическому подходу к решению инженерных задач по определению натуральных величин объектов и их взаимного расположения.

Целесообразно на практических занятиях использовать рабочую тетрадь с условиями графических заданий. При этом студенты не тратят времени на перечерчивание условия с доски, и решение задач не искажается вследствие неточности изображения. Такую рабочую тетрадь можно использовать и в электронном варианте, предусматривающем выполнение заданий в графических редакторах АШюСАО или КОМПАС. Такое применение наиболее целесообразно для внеаудиторной

самостоятельной работы студентов. При этом обучающиеся могут выполнить задания дома на компьютере и отправить их преподавателю на проверку по электронной почте.

В курсе изучения дисциплины «инженерная и компьютерная графика» предусмотрено выполнение лабораторных работ, на которых студенты знакомятся с современными методами построения графических изображений, изучая графические редакторы.

Таким образом, на практических и лабораторных занятиях студенты получают практические умения и навыки построения различных графических изображений, изучают подходы к решению задач инженерного профиля. При этом реализуется деятельностный компонент формирования графической культуры обучающихся.

Для активизации самостоятельной работы студентов при изучении графических дисциплин хорошо зарекомендовали себя различные электронные обучающие продукты - обучающие программы, тесты для самоконтроля, электронные учебники. Эти инновационные средства обучения создают положительную мотивацию к изучению дисциплин, стимулируют к активному использованию компьютерных технологий в учебной деятельности. При этом обучающийся не является пассивным участником учебного процесса, он может регулировать скорость обучения, выбирать удобное для себя время, а также темы для изучения. То есть, включаясь в процесс самообучения, студент принимает на себя часть функций преподавателя. К тому же компьютер, выступающий в роли репетитора, может повторить задание несколько раз, показать ошибку и дать правильный ответ.

Необходимо отметить, что для полноценного формирования графической культуры студентов в современных условиях нельзя обойтись без использования компьютерных технологий в учебном процессе в качестве дидактического инструментария, широко используя при этом средства компьютерной графики.

В целях исследования возможности и целесообразности применения электронных средств обучения при изучении графических дисциплин было

проведено анкетирование среди студентов первого курса факультета автоматизации и информационных технологий. При этом выяснено, что 92 % обучающихся положительно относятся к использованию компьютерных технологий в учебном процессе. Текстовую информацию с бумажного носителя и экрана компьютера воспринимают одинаково успешно 80 %, а графическую информацию - 90 % студентов. Используют Интернет для учебных целей 88 % опрошенных, читают электронные книги - 65 %, применяют обучающие программы -57 %, пользуются электронными каталогами в библиотеке - 35 % студентов. Выявлено, что обучающиеся почти не знакомы с программами компьютерной графики (AutoCAD, КОМПАС, 3DMAX). В учебном процессе ими пользуются всего 32 % опрошенных, в то время как офисные программы (Word, Excel) используют 95 % студентов.

Результаты опроса позволяют сделать следующие выводы: студенты заинтересованы в использовании компьютерных технологий и средств обучения, но имеют низкую информированность в области достижений инженерной компьютерной графики. Поэтому при создании учебно-методического обеспечения графических дисциплин необходимо уде -лить внимание разработке различного плана электронных обучающих продуктов на основе средств компьютерной графики, усилить эстетическую составляющую в инженерной подготовке, а также активизировать учебно-познавательную и проектную деятельность студентов.

В заключение необходимо подчеркнуть, что тщательная разработка учебно-методического обеспечения графических дисциплин, основанного на использовании информационных, компьютерных технологий и средств компьютерной графики, охватывающего все виды учебной деятельности, будет способствовать эффективному формированию и развитию графической культуры студентов. Теоретико-методические основы создания такого обеспечения - в выявлении структурных составляющих графической культуры, разработке интегративного подхода к графической подготовке студентов инженерных специальностей.

Список литературы

1. Лямина А. А. Графический язык - международный язык общения: мат-лы XI регион. науч.-техн. конф. «Вузовская наука - Северо-Кавказскому региону». Т. 2. Ставрополь: СевКавГТУ, 2007. 168 с.

2. Кострюков А. В. Теоретические основы и практика формирования графической культуры у студентов технических вузов в условиях модернизации высшего профессионального образования (на примере начертательной геометрии и инженерной графики): дис. ... д-ра пед. наук: Оренбург, 2004. 328 с.

3. Ведякин Ф. Ф., Панасенко О. Ф. Пространственное мышление и графическая культура студентов инженерных специальностей: мат-лы Всерос. науч. конф. с международным участием «Анализ гуманитарных проблем современного российского общества». Омск: ОмГУПС, 2006.

4. Половинкин А. И. Основы инженерного творчества: учеб. пособие. 3-е изд., стер. СПб.: Издательство «Лань», 2007. 368 с.

5. Шеховцова Д. Н. Использование компьютерных технологий для визуализации математического знания // Вестн. Том. гос. пед. ун-та. 2010, № 10. С. 99-103.

Матвеева М. В., кандидат педагогических наук, доцент.

Сибирский государственный технологический университет.

Пр. Мира, 82, г. Красноярск, Красноярский край, Россия, 660049.

E-mail: [email protected]

Материал поступил в редакцию 01.09.2010.

BASES OF FORMING OF STUDENTS’ GRAPHICAL CULTURE IN ENGINEERING EDUCATION

Theoretical and practical questions of forming of students’ graphical culture are discussed in the article. Opportunities of use of the computer technology for forming of students’ graphical culture by teaching such disciplines as descriptive geometry and engineering graphic are found.

Key words: adaptation, mentality, climatic factors, the geographical environment, national character.

Siberian State Technological University.

Pr. Mira, 82, Krasnoyarsk, Krasnoyarsk territory, Russia, 660049.


1
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
КАЛУЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. К.Э. ЦИОЛКОВСКОГО
КАЛУЖСКИЙ ФИЛИАЛ МОСКОВСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА ИМ. Н.Э. БАУМАНА


Преподавание раздела "Графика" в 8 классе
Курсовая работа по методике преподавания технологии
Калуга 2008
Калужский государственный педагогический университет им. К.Э. Циолковского
Межвузовский инженерно-педагогический факультет
Кафедра психологии профессиональной деятельности и управления непрерывным педагогическим образованием
«УТВЕРЖДАЮ»
Руководитель___________________
«___»_____________200__г.
ЗАДАНИЕ
на курсовую работу студента
Подольский А.В. группы ИП-41
Тема работы: Методика изучения раздела «Графика» в 8 классе
Содержание расчетно-пояснительной записки:
Введение

1.1 История развития графики



2.1 Планирование учебной работы и подготовка к занятиям

2.3 Формы и методы обучения графике
Заключение
Список литературы
Приложения
Задание принял к исполнению_____________________________
Содержание
Введение…………………………………………………………………………...4
1. История, современное состояние и особенности курса графики в 8 классе.7
1.1 История развития графики……………………………………...……………7
1.2 Цели и задачи курса графики………………..……………………………...12
1.3 Организационные вопросы курса графики………………………….……..16
2. Методика преподавания графики в 8 классе………………………………..24
2.1 Планирование учебной работы и подготовка к занятиям Анализ учебной программы по графике……………………………….……………..…………...24
2.2 Методические разработки уроков……………………………..……………32
2.3 Формы и методы обучения графике………………………………………..55
Заключение…………………………………………………………….................65
Список литературы………………………………………………………………66
Приложение 1. Рабочая программа по графике………………………………..69
Приложение 2. Перспективно-тематический план…………………..………..74
Введение
Изменения социально-политической и экономической обстановки в России ставят новые задачи перед системой обучения и воспитания подрастающего поколения. Важную роль в решении этих задач играют учреждения общего образования. Именно они, в первую очередь, обеспечивают жизненное и социально-трудовое становление молодежи, соответствующее современным требованиям общества.
В достижении этой цели ведущую роль играет трудовая подготовка, которая направлена на воспитание трудолюбия и уважительного отношения к труду, развитие практических умений и навыков, расширение политехнического кругозора, введение в мир профессий. Накопленный в общем образовании опыт трудового обучения, сложившаяся материально-техническая база и подготовленные педагогические кадры обеспечивают возможность развития на более высоком уровне содержания подготовки молодежи к труду средствами образовательной области "Технология", которая в системе общего образования представляет главенствующую составляющую общественной практики. Эта область качественно по-новому решает проблемы трудовой подготовки школьников в новых социально-экономических условиях с учетом тенденций технико-технологического развития современного общества и мирового опыта технологического образования.
Технология определяется как наука о преобразовании и использовании материи, энергии и информации в интересах и по плану человека. В школе «Технология» - интегративная образовательная область, синтезирующая научные знания из курсов математики, физики, биологии и показывающая их использование в, промышленности, энергетике, связи, сельском хозяйстве и других направлениях деятельности человека.
Черчение (графика) является той частью раздела «Технологии», при изучении которой учащиеся овладевают процессами оперирования различными видами графических изображений и графической деятельности.
Через графическую деятельность реализуются одновременно такие познавательные процессы, как ощущение, восприятие, представление, мышление и др., благодаря чему у ученика создается общность многих психических функций. При построении чертежа эти процессы к тому же сочетаются и координируются с кинестетическими и моторными функциями рук, что является, согласно данным психологии, важнейшим условием дифференцировки пространственных отношений объектов.
В последние годы резко повысилась информативность графических изображений, что предопределило переход черчения к компьютерной графике.
Графическая подготовка -- процесс, обеспечивающий формирование у учащихся рациональных приемов чтения и выполнения различных графических изображений, встречающихся в многоплановой трудовой деятельности человека. Графическая подготовка дает основы графической грамоты, позволяющей учащимся в некоторой степени ориентироваться в чрезвычайно большом объеме графических информационных средств.
В школе графическая грамотность формируется совокупностью многих факторов учебной деятельности, протекающей на уроках целого ряда дисциплин при ведущей роли предмета «Черчение». Эта дисциплина дает теоретические основы правил построения, чтения и оформления различных графических документов, а также делает возможным формирование у учащихся обобщенных приемов графической деятельности, используемых как при изучении других школьных дисциплин, так и в практической работе. В связи с этим процесс поиска дидактических средств повышения качества графической подготовки учащихся общеобразовательной школы, разработка ее нового содержания следует рассматривать как общепедагогическую проблему, а в контексте с работой по подготовке и повышению квалификации кадров в системе непрерывного образования и как государственную задачу.
В связи с выше сказанным, сформулируем тему данной курсовой работы: «Методика изучения раздела «Графика» в 8 классе».
Цель изучения раздела: закрепление и расширение теоретических знаний и углубление умений использовать эти знания для решения конкретных учебно-воспитательных задач методического характера, на примере изучения раздела «Графика» 8 класс.
Для достижения поставленной цели решаются следующие задачи:
Изучить историю развития графической культуры;
Рассмотреть цели и задачи курса «Графика»;
Общие вопросы организации уроков графики
Разработать учебную документацию (рабочую программу, календарно-тематический план, поурочные планы);
Рассмотреть основные методы, применяемые при преподавании данного предмета
1. История, современное состояние и особенности курса графики в 8 классе
,1.1 История развития графики
К основным характеристикам многообразия мира, в котором мы существуем, относятся форма и размер окружающих нас предметов. Попытки отобразить эти признаки предпринимались с незапамятных времен. Существует красивый поэтический миф о прекрасной коринфянке, очертившей на озаренной луною скале силуэт своего возлюбленного. Согласно легенде, этим она положила начало графическому изобразительному искусству.
Почти сто лет назад на севере Испании обнаружили пещеру, весь свод которой был украшен цветными рисунками бизонов, кабанов, диких лошадей. Археологи установили дату их происхождения - это эпоха каменного века - палеолита (рис. 1).
Возможно, человек, создавая эти изображения, надеялся добиться успеха на предстоящей охоте или старался запомнить и сообщить окружающим обстоятельства состоявшегося события. С позиций сегодняшнего дня мы охарактеризовали бы его действия как обмен информацией с другими членами общества.
Несколько лет назад подобные рисунки были обнаружены на Южном Урале в Каповой пещере.
Все это свидетельствует о том, что начало появления графических изображений было положено еще в древние времена.
С течением времени количество описываемых объектов увеличивалось, соответственно возрастал и объем используемой информации. Появилась необходимость передавать и воспринимать достаточно подробные сведения о природных особенностях местности, возводимых строительных сооружениях, предметах труда и др. Оказалось, что наиболее удобным приемом передачи информации об объемном, реально существующем или придуманном объекте является графическое изображение его на плоскости. По мере усложнения создаваемых инженерных сооружений, механизмов и машин возникла необходимость разработки таких правил их изображения, которые позволили бы с использованием ограниченного числа средств (точек, линий, цифр, знаков и надписей) передавать достаточно полную информацию в виде, доступном любому специалисту.
Техническая дисциплина, разрабатывающая правила передачи информации об окружающих нас предметах (сооружениях, машинах, отдельных деталях и пр.) путем изображения их на плоскости, называется черчением. Результат воспроизведения пространственного объекта с помощью линий на плоскости называется чертежом.
Развитие цивилизации обусловило возникновение и совершенствование геометрии. Зародившись из потребности измерения земельных наделов, геометрия становится наукой, изучающей формы плоских и пространственных фигур, а также отношения между ними. По мере усложнения используемых человеком сооружений и предметов, а следовательно, увеличения объема передаваемой информации возрастает практическое значение геометрии. При строительстве пирамид в Египте (около 2800 лет до н.э.), Судане (примерно 500 лет до н.э.) и Мексике (100 -- 500 лет до н.э.) уже использовали чертежи, достаточно точно передающие не только форму, но и размеры возводимого сооружения.
Пришедшая на смену египетской культура Древней Греции оставила нам имена не только великих скульпторов, поэтов и философов, но и великих математиков -- это Фалес из Милета, Пифагор из Самоса, Евклид из Александрии, Архимед из Сиракуз. Перечень могут продолжить Апполоний Пергский и Менелай Александрийский, известные своими трудами по геометрии и тригонометрии. Римский архитектор и инженер Витрувий, обобщая и развивая опыт греческого и римского зодчества, использовал непременные составляющие любого проекта -- три вида изображений: ихнографию (план сооружения), ортографию (вид спереди) и сценографию (изображение в перспективе).
Новое развитие теории изображений произошло лишь в эпоху Ренессанса (XIII --XVI вв. н.э.). Возрождение античной культуры вызвало потребность достоверного изображения окружающего мира. Поиски сущности правильного изображения привели к использованию математики, законов геометрии и открытию закономерностей перспективы.
Выдающийся немецкий живописец и график Альбрехт Дюрер (1471 -- 1528) не только впервые изложил основы евклидовой геометрии и описал построение геометрических фигур, но и заметно развил теорию пространственного изображения.
Особое место в формировании современных способов отображения геометрических форм объектов окружающего мира занимает французский ученый и инженер Амедео Франсуа Фрезье (1682-- 1773). Его труды можно считать первыми фундаментальными пособиями по основам начертательной геометрии. Фрезье Пользовался различными приемами проецирования, приводил примеры проецирования на две взаимно перпендикулярные плоскости, применял для определения истинного вида фигуры способы преобразования чертежа. Многие использованные им понятия. И приемы современны и поныне.
Возникновение начертательной геометрии как науки об изображении пространственных геометрических форм на плоскости связывают с именем французского математика и инженера Гаспара Монжа (1746--1818). Выдающиеся способности позволили сыну торговца скобяными товарами в бургундском городке Бон, пробившись через все сословные преграды, стать в 24 года заведующим кафедрами математики и физики в Королевской военно-инженерной школе в Мезьере, а в 34 года быть избранным членом Парижской академии наук.
В 1795 г. в Париже для подготовки преподавателей была открыта Нормальная школа, значительный объем в программе, которой занимали предметы, связанные с теорией и практическим приложением начертательной геометрии. Первый курс начертательной геометрии в этой школе читал Монж. Стенограммы его лекций были напечатаны в 1795 г. в журнале Нормальной школы, а в 1799 г. вышли отдельной книгой. Это был первый учебник, где начертательная геометрия была заявлена как самостоятельная наука.
Первые достоверные сведения о применении чертежей в России относятся к XVI веку. Например, в описи царского архива за 1574 год можно прочесть следующее:
"Ящик 57. А в нем чертежи Лукам Великим и Псковским пригородкам с литовским городом Полотцком.."...
На рис. 2 приводится изображение оружейного двора в Тобольске. Оно взято из "Чертежной книги Сибири". С позиции сегодняшнего дня подобные чертежи выглядят несколько примитивными, но для того времени они были весьма значимыми для градостроения, а главное, их полностью воспринимали сами строители.
Большим стимулом к развитию графической культуры в России явилась деятельность Петра I. Сам Петр любил чертить и делал это прекрасно. Вернувшись из Голландии, где он работал на кораблестроительных верфях, Петр привез диплом, где значилось: "Корабельную архитектуру и черчение планов изучил основательно и уразумел эти предметы в такой степени, сколько мы сами их разумеем".
В 1709 году Петр I издал Указ: "Все прожекты зело исправны быть должны, дабы казну зряшно не разорять и Отечеству ущерба не чинить".
Сподвижник царя Петра генерал-фельдмаршал граф Яков Брюс в своей книге "О геометрии вообще" (Москва, 1709) не только учит правилам черчения, но и поучает, как лучше это сделать: "Инженеры без умения меры художества не возмогут ни правых чертежей зделати, ниже без порока что основати. Сего искусства надобность и польза простирается тако далеко, что по истинне сказати возможно, что ничего в свете есть, еже бы не возмогло оным преодалено и зделати быти".
Первым русским ученым, связавшим свою судьбу с начертательной геометрией, был Яков Александрович Севастьянов (1796-- 1849) -- профессор Корпуса инженеров путей сообщения и автор переводных и оригинальных трудов.
Начертательная геометрия как фундаментальная дисциплина была введена в программы многих учебных заведений -- Инженерного и Артиллерийского училищ, Санкт-Петербургского и Московского университетов, Императорского Московского технического училища и др. В 1822 г. курс начертательной геометрии в Казанском университете читал Н. И. Лобачевский. Однако ведущее положение в подготовке кадров и развитии начертательной геометрии в России XIX в. сохранял Корпус инженеров путей сообщения, где учились и передавали знания следующим поколениям внесшие заметный вклад в науку А. X. Редер (1809--1873), Н. П.Дуров (1834--1879), Н.И.Макаров (1824--1904), В.И.Рынин (1877 -- 1942). В области начертательной геометрии 14 классических трудов создал Валериан Иванович Курдюмов (1853-- 1904).
В XX в. черчение следовало за техническим прогрессом, т. е. существенный и быстрый рост потребности в чертежах обусловил совершенствование приемов изображения, а также используемых технологий и оборудования. Например, если в начале века для хранения и размножения использовали чертежи, выполненные тушью на тонком батисте, то в середине века стало возможным оперативно изготавливать необходимое число копий с оригинала, вычерченного карандашом на листе бумаги.
Качественные изменения в способы передачи информации геометрического характера внесли компьютеры, оснащенные специальными графическими программами. Стало возможным выполнять и размножать чертежи, используя компьютер, вводить в память компьютера чертежи, выполненные вручную, сохранять информацию на магнитном носителе и передавать эту информацию непосредственно на технологическое оборудование, предназначенное для изготовления моделей или готовых деталей. Компьютер позволяет получить любое изображение объекта, т.е. обеспечивает возможность «рассматривать» его со всех сторон.
Однако прогресс никак не умаляет значения начертательной геометрии и черчения, которые В. И. Курдюмов определил следующим образом: «Если чертеж является языком техники, одинаково понятным всем народам, то начертательная геометрия служит грамматикой этого мирного языка, так как она учит нас правильно читать чужие и излагать на нем наши собственные мысли, пользуясь в качестве слов одними только линиями и точками, как элементами всякого изображения».
Умение понимать язык чертежа и передавать на этом языке необходимые сведения обязательны для любого квалифицированного специалиста, связанного с разработкой, изготовлением или эксплуатацией машин. Правильное и глубокое понимание сведений, приведенных на чертеже, является непременным условием изготовления качественных деталей, механизмов и устройств.
1.2 Цели и задачи курса графики
Учитывая мировую тенденцию ускоренного развития графической информации, использование графического языка в качестве международного языка общения, общее среднее образование должно предусмотреть качественное формирование знаний о методах графического предъявления и восприятия информации.
Постоянно расширяющийся и совершенствующийся парк разнообразных технических средств, используемых в промышленности и быту, предъявляет повышенные требования к качеству графической подготовки специалистов, его обслуживающих. Диалог с компьютером конструктор может вести лишь тогда, когда он понимает его графический язык, свободно владеет им и обладает развитыми пространственными представлениями, умением мысленно оперировать пространственными образами и их графическими изображениями.
В конструировании и современном производстве чертеж используется как средство фиксации отдельных этапов процесса конструирования, является лаконичным документом, четко и однозначно передающим всю информацию об объекте, необходимую для его изготовления, и одновременно уникальным средством и прямым источником производства во всех отраслях промышленности.
Подготовка подрастающего поколения к освоению «языка техники», чтению и выполнению разнообразных чертежей -- задача государственного масштаба. Решить поставленные задачи невозможно, если школьное образование не обеспечит должный уровень графической подготовки ее выпускников.
Курс черчения в школе направлен на формирование графической культуры учащихся. Понятие «графическая культура» широко и многогранно. В широком понимании графическая культура понимается как совокупность достижений человечества в области разработки и усвоения графических способов передачи информации. Применительно к обучению учащихся под графической культурой подразумевается достигнутый ими уровень усвоения графических методов и способов передачи информации, который оценивается по качеству выполнения и чтения чертежей. Формирование графической культуры учащихся есть процесс овладения графическим языком, используемым в технике, науке, производстве, дизайне и других областях деятельности.
В процессе обучения черчению (графике) учителя должны ставить следующие цели: научить школьников читать и выполнять чертежи, приобщить их к графической культуре.
Цель обучения предмету конкретизируется в основных задачах:
формировать основные знания о правилах оформления чертежей и требованиях ГОСТов;
научить учащихся аккуратно и рационально работать, правильно применять чертежные инструменты и принадлежности;
обучить основным правилам и приемам графических построений;
формировать знания об основах прямоугольного проецирования на одну, две и три плоскости проекций, способах построения изображений на чертежах (эскизах), а также построения прямо угольной изометрической проекции и технических рисунков;
сформировать умения и навыки чтения и выполнения комплексных чертежей и аксонометрических проекций различной степени сложности;
-развивать статические и динамические пространственные представления и воображения, пространственное, образное и логическое мышление, творческие способности учащихся;
содействовать привитию школьникам графической культуры;
развивать политический кругозор путем ознакомления учащихся с основами технологии изготовления деталей, элементами деталей, изучения роли чертежа в современном производстве, процесса проектирования;
научить учащихся самостоятельной работе со справочной и специальной литературой, учебными материалами;
формировать эстетический вкус, аккуратность;
формировать умения применять графические знания в новых ситуациях;
формировать познавательный интерес и потребность к самообразованию и творчеству;
развитие глазомера, умение на глаз определять размеры деталей.
Для осуществления указанных задач программа предусматривает изучение теоретических положений, выполнение упражнений, обязательный минимум графических и практических работ.
Программа ставит следующие учебные задачи:
Дать учащимся знания основ метода прямоугольных проекций и построения аксонометрических изображений.
Ознакомить с важнейшими правилами выполнения чертежей, условными изображениями и обозначениями, установленными государственными стандартами.
Способствовать развитию пространственных представлений, имеющих большое значение в производственной деятельности, научить анализировать форму и конструкцию предметов и их графические изображения, понимать условности чертежа, читать и выполнять эскизы и чертежи деталей, несложные сборочные и строительные чертежи, а также простейшие электрические и кинематические схемы.
Развивать элементарные навыки культуры труда: уметь правильно организовать рабочее место, применять рациональные примы работы чертежными и измерительными инструментами, соблюдать аккуратность и точность в работе и другое.
Научить самостоятельно работать с учебными и справочными пособиями по черчению в процессе чтения и выполнения чертежей и эскизов.
Познавательная активность учащихся в процессе приобретения знаний носит избирательный характер. Жизненный и трудовой опыт в определенной степени влияет на глубину усвоения, на их отношение к учебе. Современная молодежь склонна критически относиться к тем сведениям, которые излагает учитель. Ей свойствен прагматический подход к знаниям: насколько они могут пригодиться в будущей трудовой деятельности.
В этом отношении предмет черчение находится в более выгодных условиях: сообщаемые в нем сведения имеют непосредственное отношение к будущим трудовым профессиям многих технически ориентированных учащихся. Это может вызвать большой интерес учащихся. Поощряя активность учеников, учитель должен постоянно заботиться об ее развитии, поскольку только при этом условии обучение окажется наиболее плодотворным. Методике развития активности учащихся в пособии уделено особое внимание.
Изучение предмета должно помочь учащимся облекать в графическую форму свои творческие замыслы, рационализаторские предложения, возникающие в процессе обучения. Поэтому развитие навыков самостоятельной работы, настойчивости в достижении поставленной цели, способности критически оценивать свою работу, ответственно относиться к ее выполнению являются важными задачами при обучении черчению.
1.3 Организационные вопросы курса графики
Обучение графике в восьмом классе имеет свою специфику по ряду признаков, к которым относятся возрастные особенности учащихся, их жизненный и трудовой опыт, а следовательно, несравненно более сознательные мотивы учения, потребность в приобретении знаний.. Поэтому, анализируя стоящие перед ним задачи, учитель графики должен для каждого планируемого урока продумать его оптимальную структуру, наиболее полноценно отвечающую целям, стоящим перед уроком. Предстоящий урок в большой степени зависит от того места, которое он будет занимать в ряду уже проведенных занятий, то есть в целой системе их, осуществляемой в течение учебного года, от уже достигнутого уровня знаний и практических навыков, от характера и объема знаний, который еще предстоит изложить учащимся. При этом учитель будет опираться на достаточно широкий кругозор своих учащихся, на возможности самостоятельного приобретения ими знаний по учебнику или научно-популярной и технической литературе.
В педагогике рассматриваются различные типы уроков и различные формы изложения знаний учителем. Так, например, различают следующие типы уроков:
а) урок изучения нового материала;
б) урок закрепления знаний, умений и навыков; в) повторительно-обобщающий урок;
г) объединенный, или комбинированный, урок.
Применительно к урокам черчения наиболее употребительной является форма так называемого комбинированного урока, где наряду с объяснением учителя в качестве важной составной части выступает и проведение практической работы, как формы закрепления полученных знаний, и необходимые пояснения к выполнению домашней работы с использованием учебного пособия.
Рассмотрим основные организационные принципы уроков черчения, которые можно условно свести к схеме (см. схему 1), на которой выделяются три подпрограммы с составляющими их элементами:
1. Оптимальная программа по учебному курсу.
В приложении к учебной программе принцип оптимизации означает определение (выбор) наилучшего из возможных вариантов управления процессом обучения. Дело в том, что всегда существовал сложнейший вопрос учебного процесса - определение действительно необходимого объема знаний, которые должен приобрести ученик в процессе обучения. Противоречия учебного процесса, заключающиеся, прежде всего, в противоречии между объемом информации, который предписывается программой, и действительными требованиями подготовки к дальнейшей учебной и профессиональной деятельности, носит зачастую эмпирический характер. Возможность передачи как можно большего объема информации за ограниченное время требует от учителя постоянного совершенствования методики преподавания.
Нельзя с достаточной достоверностью сказать, сколько времени учащимся данного класса, а вернее, каждому ученику нужно на решение той или иной задачи, на изучение страницы учебника, выполнении графических заданий и т.п.
Схема 1
Без накопления данных, характеризующих производительность труда в учебном процессе, без выявления факторов, позволяющих управлять ею, не могут быть определены исходные данные для совершенствования учебного процесса. Некоторые основные факторы перечислены в упомянутой выше схеме.
2. Программа графических действий и операций.
Эта программа предусматривает систему развития знаний, умений и навыков в работе с различными типами современных чертежных средств для эффективного выполнения чертежно-технической документации. Это означает, прежде всего, эффективную взаимозависимость содержания учебной программы и насыщенности ее графическими и практическими заданиями.
Последнее предполагает не только успешное овладение чертежными инструментами и механическими приспособлениями для развития и закрепления навыков в работе, но и приложение научных методов для принятия решений, связанных с эффективным выполнением графических и практических заданий по черчению.
Качество оформления учебных графических и практических заданий и время, отводимое на их выполнение, во многом зависят от следующих обстоятельств:
а) повышения производительности труда учащихся за счет рационально выбранных чертежных средств и закрепленных навыков работы с ними;
б) системного подхода в выборе методов и способов оформления чертежно-графических и практических работ;
в) способности творчески подходить к своей деятельности, умения исключать рутинные, то есть подготовительные и повторяющиеся операции;
г) способности спланировать свои действия над чертежом в зависимости от умения разделить и затем последовательно выполнить их с учетом сложности чертежа.
3. Программа обучающей деятельности.
Обучаемость -- эмпирическая характеристика индивидуальных возможностей учащихся усвоения учебной информации, их способности к выполнению учебных заданий, в том числе к запоминанию учебного материала, решению задач, выполнению различных типов контрольных работ и тестов и к самоконтролю. Обучаемость выступает как общая возможность психического развития, достижения наиболее обобщенных систем знаний, общих способов действий.
Технические приемы, применяемые в традиционном учебном процессе, - это средства обучения и контроля. Подобного типа средства могут быть индивидуального и коллективного характера и оперативно приспосабливать ход обучения к реальной динамике усвоения учебного материала.
Применения технических средств в обучении учащихся призваны:
- повысить эффективность учебного процесса за счет своевременной адаптации процесса обучения к индивидуальным особенностям учащихся;
- разгрузить учителя от "черновой" и воспитательной работы и тем самым повысить эффективность его труда. Для повышения качества обучения необходимо, чтобы у учащихся на уроках постоянно был учебник, а также справочники в классной библиотечке. Учебник определяет последовательность и объем излагаемых сведений по каждой теме. Каждый его раздел содержит целостный и законченный "объем" знаний, на который постоянно должен ориентироваться учитель. Учебник надо использовать рационально. Нельзя во время урока отводить продолжительное время на самостоятельное его чтение, так как при этом утрачивается руководящая роль учителя. Опыт свидетельствует о низкой продуктивности такого использования учебника. Значительно более правильным является рекомендация учителя раскрыть учебник на указанной странице, рассмотреть приведенный там рисунок или прочитать вслух краткое правило или рекомендацию и тут же проверить, как это воспринято классом.
Очень важную роль играет учебник в процессе выполнения упражнений и обязательных работ. Здесь учитель может порекомендовать учащемуся, у которого возникли трудности, посмотреть учебник, прочитать нужный раздел или рассмотреть иллюстрацию к построению. Более конкретную помощь можно оказать учащемуся, если после чтения книги трудность осталась непреодоленной. С наибольшей эффективностью используется учебник в процессе домашней работы при повторении пройденного материала, выполнении практических работ. Учебник помогает привести в стройную систему изложенные на занятиях сведения, развивает логическое мышление, формирует речь учащихся.
Особое внимание следует уделить контролю за умением учащихся самостоятельно работать с литературой, привитию учащимся навыков планирования и самоконтроля, умения пользоваться оглавлением, сносками, примечаниями, алфавитным и предметным указателями, постоянно встречающимися в учебной литературе, то есть всем справочным аппаратом книги. Такие навыки не возникают самопроизвольно, им нужно и можно обучать; владение ими облегчает работу учащегося. Сюда же можно отнести умения составить тезисы, вести конспект, воспользоваться библиотечным каталогом для подбора литературы по нужному вопросу и т.д.
В настоящее время существует множество учебников и учебных пособий по черчению, поэтому одной из главных задач учителя является правильно подобрать учебную литературу и рекомендовать ее учащимся.
Далее дадим краткую характеристику действующему в настоящее время учебнику по черчению.
Действующий в настоящее время учебник «Черчение» для 7--8 классов авторов А.Д. Ботвинникова, В.Н. Виноградова, И.С. Вышнепольского написан в соответствии со школьной программой, рекомендованной Департаментом общего среднего образования МО РФ (ответственный редактор В. А. Гервер). Учебник включает информацию по теории графических изображений по направлениям:
изучение методов изображений;
построение и чтение чертежей;
выполнение эскизов и технических рисунков;
геометрические построения;
применение способов преобразования изображений и простейших приемов конструирования;
знакомство с архитектурно-строительными чертежами.
Учебник содержит также справочный материал, вопросы для повторения, значительное количество задач и упражнений, в том числе и для выполнения графических работ. Большое внимание уделяется иллюстрированному материалу, так как основные понятия у учащихся формируются в процессе общения с графикой.
Многие иллюстрации в учебнике выполнены с применением цвета, который задействован с целью улучшения и углубления восприятия изображений, эмоционального воздействия на учащихся приведенных чертежей, повышения их удельного веса в общем объеме материала
учебника. В ряде иллюстраций цвет использован для нанесения выносных и размерных линий на чертеже, знаков диаметра и квадрата, отдельных надписей. Цветом выделены изображения проецируемых фигур или их элементов, проекции отдельных предметов и деталей, некоторые линии построений, проекции точек, секущие плоскости и др. Цвет в учебнике нашел свое применение в показе знаков ориентировки (вопросы, задания и пр.), подчеркивании нумерации глав, изображении сетки для начертания букв и цифр стандартного шрифта, бумаги «в клетку». ,
Как уже отмечалось, учебник «Черчение» для 7--8 классов рекомендован для реализации соответствующей программы 7--8 классов основной школы. Вместе с тем учебник может быть использован для работы и по программе «Черчение», 9 класс.
Итак, рассмотрены основные организационные вопросы уроков графики. Подведем некоторые промежуточные итоги.
Выводы:
графическая подготовка - процесс, обеспечивающий формирование у учащихся рациональных приемов чтения и выполнения различных графических изображений, встречающихся в многоплановой трудовой деятельности человека;
история становления графики берет свое начало еще с каменного века. Но активнее развитие графики как науки происходит с XIV в. н.э.;
изучение графики в школе ставит перед собой множество целей и задач. В целом, их можно объединить в следующую общую цель: научить школьников выполнять различные построения и чертежи, приобщить их к графической культуре;
наиболее оптимальной формой организации уроков графики является комбинированный урок, который включает как сообщение новых знаний, так и практическую работу учащихся по их закреплению.
Перейдем к практической части курсовой работы.
2. Методика преподавания графики в 8 классе
2.1 Планирование учебной работы и подготовка к занятиям. Анализ учебной программы по графике
Как и всякий вид деятельности, труд учителя требует предварительной подготовки, продумывания и планирования. Этот подготовительный этап, предшествующий проведению самого занятия, является прямым служебным долгом учителя, который руководствуется для этой цели учебной программой.
Программа учебная - документ, определяющий содержание и объем знаний, умений и навыков. Подлежащих усвоению в процессе изучения дисциплины.
Программа школьного курса черчения -- это нормативный документ, определяющий базовый уровень графической подготовки учащихся. Она включает перечень теоретических сведений, необходимых для формирования основ графической грамоты, и список обязательных графических работ, дающих учащимся необходимый уровень практических умений и навыков.
В настоящее время для основной школы Российской Федерации опубликовано несколько программ, названных авторскими. В их числе: «Черчение. 9 класс» (ответственный редактор В. И. Якунин); «Черчение. 7--9 классы» (под ред. В. В. Степановой); «Черчение с элементами компьютерной графики. 7--9 классы (под ред. В. В. Степаковой); «Черчение. 7--8 классы» (ответственный редактор В. А. Гервер); «Черчение. 8--9 классы» (под ред. Ю. П. Шевелева). Учителю и администрации школы предоставляется право выбора программ из числа рекомендованных -- они допущены Департаментом общего среднего образования МО РФ. Эти программы обеспечивают реализацию «Обязательного минимума содержания образования по черчению».
Укажем на некоторые характерные особенности программы черчения для 9 класса (ответственный редактор -- доктор технических наук, профессор В. И. Якунин).
Программа исходит из необходимости формирования в школьном курсе черчения графической культуры учащихся, развития мышления и творческого потенциала личности. Это новые подходы к определению целей графической подготовки школьников. В развитие «Концепции содержания образования по черчению в 12-летней школе» программа указывает, что графическая культура -- это «совокупность достижения человечества в области освоения графических способов передачи информации». Применительно к школьному курсу -- это «уровень совершенства, достигнутый школьниками в освоении графических методов и способов передачи информации, который оценивается по качеству выполнения и чтения чертежей ». Поэтому процесс формирования графической культуры учащихся должен быть направлен прежде всего на овладение ими таким средством информации, которым является графический язык.
Исходя из этих целей, программа формулирует конкретные задачи обучения черчению в школе:
сформировать необходимый объем знаний об основах проецирования и способах построения чертежей (эскизов), аксонометрических проекциях и технических рисунках;
научить читать и выполнять несложные чертежи, эскизы и другие изображения;
развить пространственные представления и образное мышление;
сформировать умения применять графические знания на практике.
Программа содержит: методические рекомендации по преподаванию черчения; краткий тематический план; содержание учебного материала, рассчитанного на 34 ч (по одному часу в неделю); «Обязательный минимум графических работ» (их 8); требования к знаниям и умениям школьников, к оценке работ учащихся.
В качестве учебника для 9 класса программа рекомендует учебники авторов: А. Д. Ботвинникова др.; Н. А. Гордиенко и В. В. Степаковой. Возможно, в будущем могут быть изданы пособия и других авторов. ,
Таково содержание одной из программ, которые предлагаются учебным заведениям. Но в ряде случаев, в типовую программу можно вносить свои изменения. Встречаются ситуации, когда количество учебных часов, отводимых на предмет, по документам и на практике не совпадают. Для приведения их в соответствие вносятся изменения в программу предмета предметной (цикловой) комиссией учебного заведения. В компетенцию этой комиссии также входит перенос учебных часов (из одной темы в другую, если это направлено на оптимизацию обучения); внесение изменений и дополнений в программный материал; вынесение отдельных вопросов программы на самостоятельное изучение в связи со снятием учебных часов и т.д.
Приведем пример разработки рабочей программы по «Графике» для учащихся 8 класса, составленной на основании программы А.А Павловой и В.Д. Симоненко (см. приложение 1).
Итак, рабочая программа составлена и одобрена. Настал черед тематического планирования. Основной его целью является предварительная организация освоения предмета для общей адаптации технологии его обучения к условиям учебного заведения.
Исходными документами для тематического планирования изучения предмета являются: учебный план (регламентирующий общий объем времени изучения), типовая учебная программа (определяющая содержание и технологию освоения предмета в общем виде), а также изменения типовой программы (которые разрабатываются в случаях несогласованности контрольных цифр объемов изучения предмета в учебном плане и программе, либо в последнюю вносятся конструктивные изменения.
Однако регламентация видов обучения (теоретического и практического) по, предмету в целом и отдельным разделам (или темам), а также определение их содержания являются инвариантными и поэтому приблизительными организационными контурами технологии формирования знаний и умений. В тематическом планировании осуществляется уточнение этих контуров в степени, достаточной для планирования отдельных занятий. Для этого выбираются формы обучения, отвечающие учебно-материальным условиям и потенциальным возможностям преподавателей учебного заведения, делается общая ориентировка по дидактическому оснащению, источникам учебной информации и календарному сроку проведения для обеспечения каждого занятая по теме.
Тематическое планирование теоретических занятий призвано максимально способствовать организации обучения учащихся на уроках в соответствии с принципами дидактики на основе рациональной организации процессов преподавания и учения.
Для решения вопроса планирования занятий, их, в целом, необходимо рассматривать как этапы в изучении определенного, относительно целостного объема учебного материала. Тем самым они всегда являются частью системы занятий, сначала в теме, затем в разделе, курсе. Каждое занятие в такой системе имеет определенное назначение и должно быть тесно увязано с другими логикой обучения.
Вид каждого занятия (тип урока) в основном определяется его местом в системе Занятий. Структура занятия должна отражать процесс формирования знаний, умений и навыков по определенной теме. При этом связи между занятиями необязательно должны быть непосредственными, они могут проявляться как на втором, третьем уроках, так и позднее. Важно только, чтобы ни одна существенная часть учебного материала любого занятия не была изолирована от последующих тем, была бы с ними связана.
Структурирование учебного материала в системе занятий в соответствии с учебной программой производится при непрерывном укреплении и развитии связей между ранее сформированными и вновь формируемыми знаниями, умениями и навыками учащихся, включая и межмредмегные связи.
Теоретически планирование занятий по теме будет происходить в следующем порядке. Первоначально определяется место расположения темы в изучаемой дисциплине, выявляются ее наиболее существенные внутрипредметные и межпредметные связи.
Затем следует определить конкретные дидактические задачи Изучения темы, на основе которых провести подбор типов уроков. Задачи изучения темы группируются в соответствии с этапами изучения темы.
Следующий этап планирования занятий по теме заключается в распределении обучающих задач каждого урока по данной теме, при jtom необходимо руководствоваться примерным тематическим Планом в программе предмета.
Далее выбираются типы уроков по теме. Одно из важных условий рационального выбора типов уроков заключается в увязке двух логико-психологических структур: структуры изучения учебной темы и внутренней структуры урока. Иными словами, выбор типа урока должен отражать основные положения методики изучения темы и методики построения и ведения самого урока.
Согласно общим структурам процессов усвоения содержания темы и закономерностям построения урока, начинать изучение темы следует с мотивации предстоящей деятельности на занятии. Для этого в нужных случаях даются исторические справки по материалу, который будет изучен по теме. Указываются знания и умения по пройденному материалу, которые особенно будут необходимы при изучении новой темы. Определяются, сколько уроков отведено на изучения данной темы, и будут ли по ней практические занятия. Перечисляются основные элементы темы и называются те знания, к и навыки, которыми должен овладеть учащийся в результате изучения всей темы, и т.п.
Весь вводно-мотивационный этап занимает немного места, и на него можно отвести часть первого занятия по теме, соответствующую актуализации опорных знаний. За ним последует изучение учебного материала темы (формирование знаний, умений и навыков), или операционно-познавательный этап.
Из вышесказанного видно, что начинать освоение темы целесообразно на уроках изучения нового материала (по классификации уроков на основе главной дидактической цели), это первый тип занятий.
На второй этап отводится наибольшая часть времени для изучения темы. В начале данного этапа необходимо поддержать интерес учащихся к изучению нового материала, усилить мотивацию учебной деятельности. В середине этапа большое место должно быть отведено закреплению изученного материала, отработке умений и навыков.
Типы уроков, характерные для данного этапа, различны. Если в начале второго этапа изучения темы предпочтение обычно отдается урокам изучения нового материала, то в середине этапа могут применяться комбинированные уроки, а заканчивать его целесообразнее уроками совершенствования знаний, умений и, навыков. Сюда могут быть отнесены уроки, на которых полученные знания имеют репродуктивное или творческое применение: уроки закрепления и применения знаний, практические занятия, экскурсии и т.д.
Заключительный, третий, этап изучения темы призван углубить полученные знания; ввести их в систему ранее полученных знаний. Очень важно на этом этапе развивать у учащихся способность обобщать изученный материал. Поэтому на третьем этапе целесообразно применять уроки контрольного характера.
Результатом тематического планирования является план. Тематические планы могут быть краткими, развернутыми, иллюстрированными и пр. Разработанные краткий и развернутый календарно-тематические планы по предмету «Графика» представлены в приложениях 2 и 3 соответственно.
Для облегчения и регламентации организационной работы
преподавателя к каждому теоретическому занятию разрабатывается план его проведения. Этот документ, предназначенный для личного пользования, подготавливает преподаватель, ведущий дисциплину.
Исходными документами для планирования теоретического занятия являются календарно-тематический план и программа предмета. Из календарно-тематического плана берутся названия занятий, а из программы предмета - содержание, которое нужно освоить на этих занятиях.
При планировании теоретического занятия разрабатываются вопросы организации деятельности учащихся, преподавателя и среды, в которой будет происходить обучение. В зависимости от его детализации он может иметь сокращенный и развернутый вид.
Развернутый план теоретического занятия включает:
-номер занятия в соответствии с календарно-тематическим планом и дату его проведения;
-тему занятия в соответствии с календарно-тематическим планом (тема должна быть лаконично и емко сформулирована);
форму организации теоретического занятия (в соответствии с календарно-тематическим планом: урок, семинар, лекция, экскурсия, и т.д.);
тип урока (в случае, если занятие проводится в форме урока: изучения нового материала; совершенствования знаний, умений и навыков; обобщения и систематизации; контроля и коррекции знаний; комбинированного и других типов, которые выбираются по любой классификации);
-цели (обучения, воспитания, развития на занятии) и пути (направления, способы) их достижения.
Обучающая цель показывает, какой степени овладения учебным материалом должны достигнуть учащиеся в конце занятия, в каких действиях это должно выразиться.
Воспитательная цель раскрывает направления воспитательных воздействий на учащихся по формированию социально-значимых качеств личности (экономических, экологических, правовых, нравственных и т.д.) и пути их осуществления на занятии. Направления воспитания выбираются, исходя из особенностей содержания предмета.
Развивающая цель определяет основные направления совершенствования психофизиологических качеств обучаемых (мышления, памяти, восприятия, психомоторики и т.д.) и пути их реализации на занятии. Направления развития выбираются также, как и направления воспитания, исходя из особенностей содержания предмета и технологии его освоения.
Воспитательная и развивающая цели формулируются в виде, отражающем незавершенность действия.
конкретные наглядные пособия, дидактические материалы и ТСО, применяемые на занятии (при имеющейся в учебных кабинетах кодировке наглядных пособий в этом пункте возможно проставление соответствующих кодов и шифров),
методы,
литература,
ход занятия. В ходе занятия делается ориентировочное распределение времени по элементам занятия, намечаются основные методы и приемы обучения, планируется содержание каждого элемента.
Основные требования к разработке плана занятия: план занятия должен быть реальным; деятельность планируется по всем элементам занятия; план должен быть в форме, легко используемой любым преподавателем, а не только разработчиком; формы учебной деятельности на разных этапах занятия должны быть различными и подбираться, исходя из психолого-педагогических закономерностей усвоения. ,
Учитывая все выше сказанное, разработаем планы-конспекты четырех теоретических занятий по теме «Метод проецирования. Ортогональное проецирование и комплексные чертежи. Эскизы предметов».
2.2 Методические разработки уроков
В начале дадим некоторые общие рекомендации по методике преподавания данной темы.
Метод проекций - тема особая. Она не имеет прямых аналогий в других предметах, изучаемых к тому времени восьмиклассниками. Учителю предстоит ввести учащихся почти в незнакомую им область знания, где с помощью воображаемых лучей происходит процесс воображаемого проецирования предмета на несколько плоскостей. При этом учащийся, выполняя или читая любой чертеж, не может воспроизвести этот процесс реально. Он будет иметь лишь лист бумаги, чертеж-задание или оригинал (предмет, деталь) и должен прийти к решению - определить форму модели, детали, предмета по чертежу или начертить проекции данного предмета, детали и модели. Справиться с подобной задачей ему поможет очень важная и полезная способность, которую принято называть пространственными представлениями. Именно эта способность, это свойство человеческого мышления, помогает учащемуся заполнить этот пробел, который возникает перед ним, когда возможности практической реализации самого процесса проецирования с помощью физических средств отсутствуют, но задачу тем не менее можно решить, прибегая к помощи пространственных представлений и воображения.
Усвоение основных положений метода проекций важно потому, что они служат обоснованием принципа, используемого для построения технических чертежей. Представление о процессе проецирования позволяет понять, почему технический чертеж строится именно таким способом, почему проекции располагаются в определенном порядке и находятся в определенной взаимосвязи друг с другом, почему изображения на чертеже отличаются от тех, которые могли бы быть получены с помощью фотографии или рисунка с натуры, отличаются от того, каким мы видим изображаемый предмет в натуре.
Объясняя основы метода проекций, учитель не должен забывать, что малое количество часов, отведенных на черчение, не позволяет ему уделить этим основам много внимания. Изучение основ является одной из важнейших задач всего курса черчения. От методики изложения этой темы во многом зависит дальнейший успех обучения предмету.
Обстоятельный анализ проблем изучения проецирования дает А. Д. Ботвинников в работе «О нерешенных вопросах в теории и практике обучения основам проецирования».
Относительно методики обучения способам проецирования среди учителей нет единого мнения. Одни учителя считают необходимым после сообщения общих сведений о проекциях раздельно изучать проецирование на одну, две и три взаимно перпендикулярные плоскости проекций и посвящают этим вопросам три урока (автор данного пособия - сторонник такого изложения тем). При этом большое внимание уделяется работе с использованием трехгранного угла.
Другие учителя убеждены в том, что необходимо как можно скорее переходить к практическим упражнениям. На изложение сведений о проецировании на одну, две и три плоскости проекций, включая рассмотрение видов на чертеже, они отводят один урок, а остальное время посвящают закреплению изученного материала путем выполнения упражнений. Полагаю, что решение вопроса о методике обучения проецированию на несколько плоскостей проекций следует предоставить учителям, - пусть они исходят из личного опыта, методических воззрений, обеспеченности школы дидактическими материалами, состава учащихся, их прошлого опыта и многих других обстоятельств Раздел, посвященный методу проекций, начат с определения процесса проецирования, на основе чего целесообразно подвести учащихся к понятию «проекция» как результату этого процесса. На основе общих сведений о проецировании и проекции изложение принципа построения дается сначала на одну, затем на две и три плоскости проекций. Такая градация процесса построения чертежа поможет учителю последовательно сформировать у учащихся понятия, необходимые для сознательного усвоения правил проецирования на три плоскости проекций.
Изучая этот материал, учитель должен максимально использовать наглядные пособия. Полезно продемонстрировать отличие свойств центрального проецирования от параллельного. Это можно осуществить с помощью моделей, описанных И. А. Ройтманом. Так, обосновывается метод прямоугольного проецирования, с помощью которого осуществляется принцип построения технического чертежа.
При объяснении основ метода проекций не следует предлагать учащимся делать записи под диктовку, зарисовывать эскизно перспективные проекции и т. д. Важно, чтобы они поняли обоснованность самого метода параллельных проекций и убедились в его пригодности для применения в техническом черчении. Нужно учесть также и то, что в дальнейшем учащиеся вновь коснутся этой темы на более глубоком уровне при изучении способа получения аксонометрических изображений.
Очень важно при обучении проецированию, чтобы ответы давали учащиеся. Вопросы могут быть, например, такими: Какие грани изобразились на проекции без искажения? Какие грани проецировались в виде отрезков прямых? Подобные же вопросы должны быть заданы об особенностях изображения ребер. Наличие цвета на модели помогает учащимся формулировать ответы. Общий вывод учитель делает с помощью учащихся: не искажаются при проецировании элементы, расположенные параллельно плоскости проекции. Наибольшее искажение претерпевают элементы, перпендикулярные к ней, частичное искажение характерно для наклонных элементов к плоскости проекций.
Логика обучения проецированию на две и три плоскости проекций такова: последовательно одна за другой решаются проблемные ситуации, причем каждая новая истина должна опираться на предыдущие.
Урок 17
Тема: Понятие о проецировании. Виды проецирования. Проецирование на одну плоскость проекции
Цели:
- дать учащимся понятие о проекции, методе проекций, о видах проецирования; познакомить с элементами прямоугольного проецирования;
- научить проецированию предмета на одну плоскость проекций; развивать пространственные представления и пространственное мышление;
- воспитывать аккуратность в графических построениях.
Тип урока: комбинированный.
Методы, приёмы проведения: беседа-сообщение, объяснение, упражнения.
Материальное обеспечение: таблицы «Процесс проецирования треугольника ABC», «Виды проецирования», «Фронтальная проекция предмета»; таблицы-задания «Узнать элементы проецирования», «Узнать виды проецирования»; модель фронтальной плоскости проекций и предмета, циркуль, карточки-задания.
Литература:
Ботвинников А.Д., Виноградов В.Н., Вышнепольский И.С. Черчение: Учеб. для 7-8 кл. общеообразоват. учреждений М.: Просвещение, 1999.
Ход урока
I. Организационная часть (0,5 мин).
П. Сообщение темы, целей урока, мотивации учебной деятельности учащихся (5,5 мин).
Учитель. Тема урока «Проецирование, его виды. Проецирование на одну плоскость проекций». (Тема записана на табличке.) На уроке мы познакомимся с процессом проецирования, его понятиями и видами, должны научиться проецировать предмет на одну плоскость проекций.
Обращаю внимание на то, что эта тема является основой для изучения дальнейшего курса черчения.
III. Изучение нового материала (15 мин).
1. Беседа о процессе проецирования, элементах проецирования (5 мин).
На первом уроке мы рассматривали различные изображения (чертежи, технические рисунки, схемы и др.). Изображения можно получить на бумаге при помощи рисования, фотографирования (Показ примеров, рисунков и фотоснимков.); на мониторе компьютера с помощью сканирования, создания графических файлов и пр.; на экране -- с помощью диаскопа, эпидиаскопа, кинопроектора, телевизора; на земле - освещением предмета солнцем и другими источниками света. Чтобы выявить раковины, трещины, внутренние дефекты, деталь просвечивают рентгеновскими или гамма-лучами. Для того чтобы построить изображения предметов, пользуются проецированием. Слово «проецирование» происходит от лат. ргоjectio, что в переводе означает бросание вперед.
Давайте рассмотрим по таблице (см. рис. 3) процесс проецирования треугольника.
Рис. 3
Возьмем в пространстве треугольную фигуру плоскую и какую-нибудь плоскость Н. Проведем через точки А, В, С треугольника прямые так, чтобы они пересекали Н в некоторых точках а, в, с. Соединив эти точки, получим изображение -- треугольник. Данная фигура, т. е. изображение на плоскости, называется проекцией. Плоскость, на которой получается проекция, называется плоскостью проекций. Прямые Аа, Вв, Сс называют проецирующими лучами. С их помощью треугольник ABC проецируется на плоскость Н. Вот мы совершили процесс проецирования.
А сейчас постарайтесь сформулировать определение проецирования. (Ответы учащихся.)
Обобщение. Проецирование - это мысленный процесс построения изображен и т.д.................

В статье мы рассмотрим понятие графическая культура в системе общей культуры личности специалиста XXI века и определим свое видение этого феномена. В связи с тем, что графическая культура связана не только с общей культурой человека, но и с его информационной культурой, мы также установим иерархию этих связей и введем тезаурус по теме исследования.

Латинский термин “культура” означает взращивание, совершенствование чего-либо, а в переносном значении - улучшение, образование.

Исследуя графическую культуру будущих учителей, следует отметить, что перед обсуждением любой проблемы необходимо договориться об основных терминах. Важность правильного определения понятия (термина) подчеркивается В.В. Краевским: "Четкость и однозначность терминологии - непременное требование научной методологии, и для науки вовсе не безразлично, какие слова употребляются, из какой понятийной среды они изъяты".

В теории культур существуют различные подходы к определению понятия “культура”. Определений культуры существует столько, сколько пишущих о ней авторов. По различным оценкам насчитывается от 150 до 250 определений.

Проведя анализ научной литературы, можно выделить следующие подходы к феномену культуры: именно культура является выражением гармоничности, богатства и целостности личности, всесторонности и универсальности связей человека с окружающим миром и другими людьми, его способности к творческой самореализации и активной деятельности.
А.Л. Зворыкин, Е.Г. Силяева, В.И. Тютюнник, Т.Ф. Белоусова рассматривают культуру как совокупность материальных и духовных ценностей, созданных человечеством, что предполагает ее деление на две основные сферы: материальную и духовную культуру.

А.И. Арнольдов, М.В. Евдокимова, В.М. Межуев понимают культуру как процесс творческой деятельности личности и ее роли в изменении мира.
В.Е. Давыдович, М.С. Каган, А.А. Криулина, Н.Б. Крылова сделали предметом своего исследования вопросы, связанные с характеристикой культуры как уникального свойства общественной жизни людей.

Популярно определение, трактующее культуру как совокупность материального и духовного достояния человечества, созданного в ходе его исторического развития. При этом под общей культурой личности понимается совокупность практических, материальных и духовных достижений, которые отображают достигнутый уровень развития человека и воплощаются в результатах продуктивной деятельности.

Утверждая, что ценности, такие как драмы Шекспира, ноктюрны Шопена, картины Репина - это элементы культуры, мы не раскрываем в этом утверждении адекватного представления о культуре, поскольку не менее важной ее частью является само создание людьми новых ценностей, взаимодействие людей с ценностями, их усвоение людьми.
Принимая во внимание все сказанное выше, в нашем исследовании мы определяем культуру как совокупность созданных людьми научных, морально-социальных, художественных и технических ценностей, а также процессы участия, взаимодействия с этими ценностями и создания новых ценностей культуры.

Одной из важнейших составляющих общей культуры личности, сегодня становится ее информационная культура. Термин «информационная культура» впервые появился в 70-х годах и означал культуру рациональной и эффективной организации интеллектуальной деятельности людей.

С.М. Михайлиди выделяет в понятии «информационная культура» три компонента - мировоззренческий, который содержит в себе представления о роли информационной технологии в оптимизации производственного и интеллектуального труда, о сущности информации и информационных процессов, коммуникативный, характеризующийся умением общения с людьми непосредственно и опосредованно с помощью компьютерной техники и других информационных средств, алгоритмический компонент, представляющий из себя рациональный способ мыслительной деятельности.

Э.Л. Семенюк рассматривает информационную культуру как важнейший компонент духовной культуры человека в самом общем смысле этого слова и приводит ряд ее составляющих: общеучебная культура как комплекс взаимосвязанных приобретенных знаний и умений, необходимых для успешного усвоения других предметных знаний и умений, и культура диалога, включающая следующие умения: адекватно относиться к чужому мнению, представлять информацию в требуемой форме, излагать свою точку зрения и доказывать свою правоту, находить общие решения и составлять программы совместного действия для достижения общих целей или в диалоге «человек « человек», или в диалоге «человек « компьютер».

Информационную культуру можно рассматривать как достигнутый уровень организации информационных процессов, степень удовлетворения людей в информационном общении, уровень эффективности создания, сбора, хранения, переработки, передачи, представления и использования информации, обеспечивающий целостное видение мира, предвидение последствий принимаемых решений.

Информационная культура включает в себя умение решать задачи на персональном компьютере, работать с прикладным программным обеспечением, а также умение создавать свои графические оболочки, т.е. умение программировать. Информационная культура - это, прежде всего, проникновение в суть процессов обработки информации, причем достаточно глубокое, чтобы можно было легко и быстро решать различные задачи на компьютере, подобно тому, как истинно грамотный человек может свободно читать и писать.

Под проникновением в суть процессов обработки информации понимается умение правильно воспринимать различную информацию, выделяя в ней главное и, отметая второстепенное, применять различные виды формализации информации, широко использовать математическое и информационное моделирование для изучения различных объектов и явлений, разрабатывать эффективные алгоритмы и реализовывать их на компьютере, анализировать полученные результаты, проводить вычислительные эксперименты для проверки правильности построенных моделей.

Понимание сущности понятия информации является важнейшим компонентом информационной культуры человека. Как отмечает В.А.Извозчиков, информатизация современного общества ставит перед системами образования задачу формирования у обучающихся информационной культуры и информационной картины мира как необходимого условия жизни и функционирования в современном обществе.

Принято выделять три уровня приобщенности человека к миру вычислительной техники: компьютерную осведомленность (первоначальное знакомство с компьютером), компьютерную грамотность и информационную культуру.

Первоначальное знакомство (осведомленность) с компьютером студент должен получить еще до прихода в ВУЗ. Современный студент, придя в ВУЗ, уже имеет представление о компьютерных играх, Internet и других возможностях компьютера. Однако между этими представлениями и информационной культурой существует ниша, которую ВУЗ должен заполнить. К сожалению, в настоящее время ВУЗ обеспечивает лишь компьютерную грамотность студентов, как пользователей персональным компьютером. Что же касается формирования информационной культуры выпускников, то эта задача может быть решена только после того, как педагоги ВУЗа сами в своей массе овладеют информационной культурой.

В.А.Извозчиков пишет, что “Информационная культура - это и понимание информационной картины мира, чтобы разумно использовать информационные потоки и анализировать их, реализовывать прямые и обратные информационные связи с целью адаптации, приспособления к окружающему миру и совершенствование его социально-экономической, общественно-политической и экологической структуры; это и грамотное владение языками общения с ЭВМ, и понимание возможностей электронно-вычислительной техники, места и роли человека в информационном обществе”.

В.Каймин под информационной культурой в узком ее понимании предлагает, прежде всего, умение получать, накапливать, искать, собирать, передавать информацию с помощью ЭВМ, используя базы данных и различные информационные системы.

Т.А. Бороненко определяет информационную культуру: а) в узком понимании - как культуру работы с информацией при помощи компьютера (уровень информационной культуры зависит от знаний программных средств и умения ими пользоваться) б) в широком понимании - как умение людей общаться друг с другом.

На основе теоретического анализа существующих подходов к понятию информационной культуры в нашем исследовании мы будем считать, что человек обладает информационной культурой, если:

ИМЕЕТ ПРЕДСТАВЛЕНИЕ

  • об информации и информационных процессах, устройстве компьютера и его программном обеспечении;

ЗНАЕТ И УМЕЕТ

  • и не нарушает законы об авторских правах на компьютерные программы;
  • и соблюдает этические нормы при публикации информации в Internet и в процессе общения с помощью Internet;
  • с достаточной скоростью вводить информацию с клавиатуры и работать с графическим интерфейсом программ с помощью мыши;
  • обрабатывать числовую информацию с помощью электронных таблиц; а также строить по результатам графики и диаграммы;
  • использовать базы данных для хранения и поиска информации;
  • использовать информационные ресурсы компьютерной сети.

ИМЕЕТ НАВЫК

  • создания и редактирования документов, в том числе интерактивных мультимедийных презентаций.

СПОСОБЕН

  • использовать графическое моделирование при решении творческих задач с помощью компьютера.

Таким образом, обобщая вышесказанное, можно дать следующее определение информационной культуре с точки зрения обеспечения дидактического процесса с использованием информационных технологий обучения. Информационная культура - это широкое понятие, включающее в себя не только умение работать на компьютере, выполнять элементарные задачи с помощью обучающих программ и систем, но и умение ориентироваться в современном информационной среде, умение искать, отбирать и критически анализировать ресурсы Интернета, умение общаться с помощью современных средств коммуникации, наличие так называемых навыков компьютерно-опосредованной коммуникации.

Развитие информационной культуры каждого потребителя информации, использование информации как важнейшего образовательного фактора, внедрение новых информационных технологий в образование, формирование графической культуры специалиста - все это актуальные задачи современных педагогических учебных заведений.

Ключевым термином в названии темы диссертационного исследования является понятие "графическая культура". В практическом аспекте графическую культуру можно рассматривать, как умение педагога создавать иллюстрации к опорным конспектам, умение рисовать и распечатывать на принтере блок схемы, создавать плакаты, рисовать электрические схемы и чертежи, умение оформить графикой книгу, статью в журнал, диссертацию, WEB-страницу (сайт) в Internet, оформить обычный или электронный учебник, умение создавать на экране компьютера мультимедиа презентации и, используя проекционную панель выводить их на большой экран и т.д. Творческий педагог стремится к возможно более полному использованию графических возможностей персонального компьютера, имея в виду различные аспекты его применения в образовании. В силу универсальности компьютер может успешно использоваться для разработки методических и дидактических средств обучения по любому предмету.

Графическая культура неотрывно связана с информационной культурой, готовностью специалиста к применению информационных технологий в обучении. Для решения этой сложной задачи необходима подготовка кадров всех работников сферы образования к использованию информационных технологий обучения, формирование информационной культуры педагогов, введение новых специальностей в педвузах для подготовки специалистов в области информатизации образования, осуществление подготовки в области информационных технологий студентов педагогических вузов.

Сегодня понятие “графическая культура” не является устоявшимся, поэтому имеет несколько интерпретаций.

С.А.Смирнов пишет, что “Графическая культура характеризуется пониманием механизмов эффективного использования графических отображений для решения стоящих перед преподавателем задач, умением интерпретировать и оперативно отражать результаты посредством читабельных изображений объектов и процессов на приемлемом эстетическом уровне”.

Согласно Мегаэнциклопедии, расположенной в Интернет и содержащей 10 энциклопедий, более 130 000 статей и более 30 000 иллюстраций: ”Графическая культура - умение использовать языковые графические средства передачи информации в разных условиях общения в соответствии с целями и содержанием высказывания”.

О том, что чертежи являются языком техники, писал еще в XVIII веке Гаспар Монж: "...Это язык, необходимый инженеру, создающему какой-либо проект, а также всем тем, кто должен руководить его осуществлением, и, наконец, мастерам, которые должны сами изготавливать различные детали". Графические изображения - язык, состоящий из знаков и символов. Причем лаконичный язык чертежей является единственным способом передать размеры, форму, взаимное расположение деталей с любой необходимой степенью точности.

Аналогично тому, как была охарактеризована информационная культура, так и графическая культура может пониматься в узком и широком смысле. В узком понимании - это культура работы с графической информацией при помощи компьютера (уровень графической культуры зависит от знаний графических программных средств и умения ими пользоваться) б) в широком понимании - как умение людей при помощи графического языка общаться друг с другом.

В понятие информационной культуры в широком смысле кроме технического аспекта (что это язык чертежей и графического дизайна) входит и гуманитарный. Сюда можно отнести умение выражать свои мысли в графической и художественной форме, умение рисовать, общаться и сотрудничать с другими людьми при помощи графики. В графическую культуру в широком ее понимании можно внести многие другие умения, не связанные с работой на компьютере, например, умение оформить рабочую тетрадь или учебный модуль, умение работать с классной доской, оформление наглядных пособий и т.д.

В нашем понимании, графическая культура будущего учителя - это система организации учителем наглядности обучения посредством графических изображений, характеризуемая мерой освоения накопленного человечеством опыта в области дизайна, черчения, компьютерной графики и анимации. В качестве ведущих компонентов такой культуры выступают графические культурные ценности учителя, его умение читать, понимать, воспринимать, обрабатывать, накапливать и перерабатывать графическую информацию.

Таким образом, информационное общество и компьютер породили новые компоненты феномена “культура” - “культура информационная” и “культура графическая”, которые являются подсистемами общей культуры и обладают рядом специфических черт, благодаря которым мы имеем основание рассматривать их как самостоятельные понятие.

Рассмотренные выше компоненты графической культуры имеют общеобразовательное и общекультурное значение. Графическая культура педагогов должна обеспечивать им реальную возможность использовать информационные технологии в обучении различным предметам вузовского цикла и в управлении образованием, а также способствовать повышению качества образования.

1. В данной статье мы рассмотрели понятие графическая культура в системе общей культуры личности и определили свое видение этого феномена. В связи с тем, что графическая культура связана не только с общей культурой человека, но и с его информационной культурой, мы также показали иерархию этих связей и ввели тезаурус по теме исследования. Графическая культура характеризует уровень графического развития личности, уровень эффективности организации графических процессов, характеризуемый мерой освоения накопленного человечеством опыта в области дизайна, черчения, компьютерной графики и анимации, обеспечивающий целостное видение мира, предвидение последствий принимаемых решений. В нашем понимании, графическая культура будущего учителя — это система организации учителем наглядности обучения посредством графических изображений, характеризуемая мерой освоения накопленного человечеством опыта в области дизайна, черчения, компьютерной графики и анимации. В качестве ведущих компонентов такой культуры выступают графические культурные ценности учителя, его умение читать, понимать, воспринимать, обрабатывать, накапливать и перерабатывать графическую информацию.

2. В настоящее время ВУЗ обеспечивает лишь компьютерную грамотность студентов как пользователей персональным компьютером. Что же касается формирования графической культуры у студентов ВУЗа, то эта задача может быть решена только после того, как педагоги ВУЗа сами овладеют графической культурой.

3. Графическая культура связана не только с культурой информационной, но и с общей культурой специалиста и человека. Другими словами, для современного специалиста XXI века умение получать необходимую информацию из сети Internet становится неотъемлемой частью его общей культуры.

4. Развитие культуры каждого потребителя информации, использование информации как важнейшего образовательного фактора, внедрение новых информационных технологий в образование, формирование графической культуры специалиста - все это актуальные задачи современных педагогических учебных заведений.